首页> 外文学位 >An ultrahigh vacuum investigation of the chemistry and tribology of extreme pressure lubricant films.
【24h】

An ultrahigh vacuum investigation of the chemistry and tribology of extreme pressure lubricant films.

机译:超高真空研究极压润滑膜的化学和摩擦学。

获取原文
获取原文并翻译 | 示例

摘要

Studies on the chemistry of extreme-pressure (EP) additives have revealed that the additives thermally decompose at the hot interfaces encountered during EP conditions to deposit lubricant films. The nature of these films depends on the additives and experimental conditions so that chlorinated hydrocarbons thermally decompose to form a layer of FeCl2 or Fe3C, and sulfur-containing molecules react to form FeS or a carbide. The goal of this dissertation is to make the link between the surface chemistry occurring during EP lubrication and the tribological properties of the resulting films. Three related studies were performed for this goal in an ultrahigh vacuum to provide well-characterized samples and to avoid any air contamination.;Tribological studies on inorganic halide films deposited on pure metal substrates. This model is simple but provides rich information that helps the understanding of more complicated, reactively formed lubricant films. Briefly, we have found that: (1) The complete coverage of the substrate by a monolayer of a halide results in a large friction coefficient reduction. The limiting friction coefficient, achieved by the completion of the monolayer, depends linearly on the hardness of the film material. The friction coefficient obeys Amontons' law and so is independent of the normal load. (2) A second regime is found where the friction coefficient increases with increasing film thickness, but still obeys Amontons' law. This is due to the increased contact area between the rough tribopin and the growing film. The frictional behavior of this regime is analyzed using a modified Greenwood-Williamson theory. (3) A third regime is identified when the film thickness is larger than the tribopin roughness, where the friction coefficient mu ∝ 1/√load. In this case, the load is distributed over the whole surface so that the interface behaves elastically.;Tribological properties of reactively formed lubricant films using CCl4 and iron. Similar friction coefficients are found for evaporated and reactively formed thin FeCl, films. Frictional behavior differences between evaporated and reactively formed films are explained by the layer-by-layer film growth and carbide formation for the latter case.;Surface and tribological chemistry of tributyl phosphite and phosphate. Tributyl phosphite and phosphate decompose on iron oxide to ultimately deposit phosphorus and carbon. A depth profile reveals that the carbon is located predominantly at the surface, while the phosphorus is distributed relatively uniformly throughout the oxide film. This implies that the tribological film formed in these reactions comprises a hard film produced by rapid diffusion of POx fragments into the oxide, covered by a low shear strength graphitic film.
机译:对极压(EP)添加剂化学性质的研究表明,添加剂在EP条件下遇到的热界面处会热分解,以沉积润滑剂膜。这些膜的性质取决于添加剂和实验条件,以使氯化烃热分解形成FeCl2或Fe3C层,而含硫分子反应形成FeS或碳化物。本文的目的是使在EP润滑过程中发生的表面化学与所得薄膜的摩擦学性能之间建立联系。为此,在超高真空下进行了三项相关研究,以提供特性良好的样品并避免任何空气污染。;对沉积在纯金属基材上的无机卤化物薄膜的摩擦学研究。该模型很简单,但是提供了丰富的信息,有助于理解更复杂的反应性润滑膜。简而言之,我们发现:(1)卤化物的单层完全覆盖基材会导致大的摩擦系数降低。通过完成单层而达到的极限摩擦系数线性地取决于薄膜材料的硬度。摩擦系数遵守阿蒙顿定律,因此与法向载荷无关。 (2)发现第二种状态,摩擦系数随膜厚的增加而增加,但仍遵守阿蒙顿定律。这是由于粗糙的摩擦片和生长的薄膜之间的接触面积增加了。使用改良的Greenwood-Williamson理论分析了该状态的摩擦行为。 (3)当薄膜厚度大于摩擦学粗糙度,即摩擦系数μ∝ 1 /√load时,确定了第三种状态。在这种情况下,载荷分布在整个表面上,从而使界面表现出弹性。;使用CCl4和铁反应性形成的润滑膜的摩擦学性能。对于蒸发的和反应形成的FeCl薄膜,发现了相似的摩擦系数。蒸发膜和反应形成膜之间的摩擦行为差异可通过后一种情况的逐层膜生长和碳化物形成来解释。亚磷酸三丁酯和磷酸酯的表面和摩擦学化学。亚磷酸三丁酯和磷酸盐在氧化铁上分解,最终沉积出磷和碳。深度分布表明,碳主要位于表面,而磷则相对均匀地分布在整个氧化膜中。这意味着在这些反应中形成的摩擦学薄膜包括硬膜,该硬膜是由POx碎片快速扩散到氧化物中形成的,并被低剪切强度的石墨膜覆盖。

著录项

  • 作者

    Gao, Feng.;

  • 作者单位

    The University of Wisconsin - Milwaukee.;

  • 授予单位 The University of Wisconsin - Milwaukee.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号