首页> 外文学位 >New metrological techniques for mechanical characterization at the microscale and nanoscale.
【24h】

New metrological techniques for mechanical characterization at the microscale and nanoscale.

机译:用于微观和纳米尺度机械表征的新计量技术。

获取原文
获取原文并翻译 | 示例

摘要

New metrological techniques have been developed for mechanical characterization at the microscale and nanoscale as follows: (1) Development of a control system and integrated imaging capability at the microscale and nanoscale for a new biaxial microtensile tester, (2) a new method for characterizing nonlinearity in AFM imaging using Digital Image Correlation (DIC), and (3) development of pointwise DIC technique. In the biaxial microtensile tester, loading of specimen is induced through the opposing motion of dual picomotor linear actuators in orthogonal directions with a displacement resolution of less than 30 nm. Using an optical microscope, in situ digital images are obtained and analyzed with DIC to determine the full field displacements at the microscale over an Area of Interest (AOI) in order to characterize the biaxial performance of the microtensile tester. An objective AFM has been integrated into the biaxial microtensile tester to obtain in situ digital images of topographic microstructural features at the nanoscale. These topographic images can then be converted to gray scale images with textures that are suitable for DIC to calculate full field displacements at the nanoscale. This measurement capability is demonstrated on a sputtered nanocrystalline copper film subjected to uniaxial loading in the microtensile tester. Since image quality is critical to the accuracy of the nanoscale DIC measurements, a new method was developed to calibrate the errors induced by the nonlinearity of AFM scanning. In this new method, the DIC technique was applied to AFM images of sputtered nanocrystalline NiTi films to calculate the displacement errors caused by the probe offset that must be eliminated from the apparent displacement field. The conventional DIC technique assumes a zero-order or first order approximation of the variation in displacement fields (i.e., displacement gradients) relative to the center of a subset of the image. In the case of displacement fields associated with the microstructure of a material, the displacement gradients can vary discontinuously, which violates the assumed nature of the displacement gradients in the conventional DIC. Therefore, a pointwise DIC technique has been developed to calculate displacements independently at each pixel location, eliminating the constraints imposed by the subset on the calculated displacements. Because of the potentially large number of unknown displacement variables that need to be determined using this approach, an efficient Genetic Algorithm (GA) optimization algorithm with a Differential Evolution (DE) method was investigated for optimizing the correlation function. To guarantee uniqueness of the optimized displacement field, the correlation function was modified using intensity gradients that had to be transformed from an Eulerian to Lagrangian reference frame using displacement gradients. The theoretical development of pointwise DIC is discussed in detail using ideal sinusoidal images, and its validation using real images is also presented.
机译:已开发出新的计量技术,用于在微米级和纳米级进行机械表征:(1)开发用于新型双轴微拉伸试验机的控制系统和在微米级和纳米级的集成成像功能,(2)用于表征非线性的新方法使用数字图像相关(DIC)在原子力显微镜成像中的应用,以及(3)逐点DIC技术的发展。在双轴微拉伸试验机中,通过双皮微电机线性致动器在正交方向上的反向运动引起样品加载,位移分辨率小于30 nm。使用光学显微镜,获得原位数字图像并用DIC分析,以确定感兴趣区域(AOI)上微尺度上的全场位移,以表征微拉伸测试仪的双轴性能。客观的原子力显微镜已被集成到双轴微拉伸试验机中,以获取纳米尺度地形微结构特征的原位数字图像。然后可以将这些地形图图像转换为具有适合DIC的纹理的灰度图像,以计算纳米级的全场位移。该测量能力在微拉伸测试仪中经受单轴载荷的溅射纳米晶铜薄膜上得到了证明。由于图像质量对于纳米级DIC测量的准确性至关重要,因此开发了一种新的方法来校准由AFM扫描的非线性引起的误差。在这种新方法中,将DIC技术应用于溅射的纳米晶NiTi薄膜的AFM图像,以计算由探针偏移引起的位移误差,必须从视在位移场中消除该误差。常规的DIC技术假设位移场(即位移梯度)相对于图像子集的中心的变化的零阶或一阶近似。在与材料的微观结构相关的位移场的情况下,位移梯度可以不连续地变化,这违背了常规DIC中位移梯度的假定性质。因此,已经开发了逐点DIC技术来独立地计算每个像素位置处的位移,从而消除了子集对计算的位移施加的约束。由于需要使用此方法确定大量潜在的未知位移变量,因此研究了一种有效的遗传算法(GA)优化算法和差分演化(DE)方法,以优化相关函数。为了保证优化位移场的唯一性,使用强度梯度修改了相关函数,必须使用位移梯度将强度梯度从欧拉参照系转换为拉格朗日参照系。使用理想正弦图像详细讨论了逐点DIC的理论发展,并提出了使用真实图像的验证。

著录项

  • 作者

    Jin, Huiqing.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号