首页> 外文学位 >Integration of Multiple Sensors for Astronaut Navigation on The Lunar Surface.
【24h】

Integration of Multiple Sensors for Astronaut Navigation on The Lunar Surface.

机译:用于月球表面宇航员导航的多个传感器的集成。

获取原文
获取原文并翻译 | 示例

摘要

During Apollo lunar surface traverses (e.g., Apollo 14), astronauts could not locate the geological target due to spatial disorientation, which substantially compromised science productivity, and potentially mission safety and success. Navigation satellites analogous to GPS are not available to lunar surface explorers; the lack of atmosphere and familiar objects of known scale, the reduced gravity and the different reflection property of lunar surface make it difficult for astronauts to judge distances and slopes and to recognize landmarks. In 2004, a space exploration policy to return humans back to the moon was established by President Bush. Recently, manned missions to a NEA (Near Earth Asteroid) attract a broader interest within both the NASA and planetary research community. Spatial disorientation is a problem that threatens the productivity and safety of EVA traverses on the Moon or the NEA in the future missions.;This dissertation aims at developing techniques enabling a precise, robust, and extensible astronaut navigation system on lunar surface for future landed mission to help the astronauts to overcome the spatial disorientation. The navigation system is based on an integrated orbital-ground sensor and data network that includes data from lunar orbiters and sensors mounted on the astronauts' suits. Lunar orbital sensors include the Lunar Reconnaissance Orbiter Camera (LROC) and the Lunar Orbiter Laser Altimeter (LOLA) systems carried onboard the Lunar Reconnaissance Orbiter (LRO). The LRO data is used to provide a global DEM (Digital Elevation Model) of very high resolution (up to 1 m). Suit-mounted sensors include a boot-mounted IMU (Inertial Measurement Unit), a sky camera on helmet and a pair of stereo cameras mounted on the chest of the astronaut as well as a display system and other components. During the lunar traverse, the IMU provides accurate distance estimation through ZUPT (Zero Velocity Update), and the stereo-vision sensors correct any drift in the azimuthal angle in the trajectory reconstructed by the IMU. An EKF (Extended Kalman Filter) is designed to incorporate the data from the IMU, the chest-mounted stereo-vision sensors, and the sky camera to obtain the high accuracy navigation solution. Promised results from field experiments in lunar like environments show that the navigation system can support a walkback scenario (providing astronauts with guidance when returning to the lander/module) of at least 6 km. This dissertation presents a method combining the star tracking technology and the IMU for positioning on the lunar surface. The experiment shows that at current configuration, the system is able to achieve an accuracy of 3 km on the lunar surface. The combination of the boot-mounted IMU and the sky camera for navigation is tested in experiments. The system reaches a disclosure error of 0.57% over a traverse of 360 m. The navigation system presented in this dissertation is capable of providing precise navigation information to enable lunar astronauts to safely navigate on the lunar surface, locate science targets, and return safely to the lander/module.
机译:在穿越阿波罗(Apollo)月球表面期间(例如,阿波罗14号(Apollo 14)),宇航员由于空间迷失方向而无法定位地质目标,这大大损害了科学生产力,并有可能损害飞行任务的安全性和成功性。月球探索者无法获得类似于GPS的导航卫星;缺乏大气和已知规模的熟悉物体,重力降低以及月球表面反射特性不同,使宇航员难以判断距离和坡度以及识别地标。布什总统于2004年制定了一项太空探索政策,使人类重返月球。最近,对NEA(近地小行星)的载人飞行任务引起了NASA和行星研究界的广泛兴趣。空间定向失调是一个威胁未来任务中登月或NEA上EVA横越的生产率和安全性的问题。本论文旨在开发能够在月球表面上实现精确,鲁棒和可扩展的宇航员导航系统的技术,以用于未来的登陆任务帮助宇航员克服空间迷失方向。导航系统基于集成的轨道地面传感器和数据网络,其中包括来自月球轨道器和安装在宇航员衣服上的传感器的数据。月球轨道传感器包括月球侦察轨道器(LRO)上搭载的月球侦察轨道照相机(LROC)和月球激光高度计(LOLA)系统。 LRO数据用于提供高分辨率(最高1 m)的全局DEM(数字高程模型)。套装式传感器包括安装在靴子上的惯性测量单元(IMU),头盔上的空中摄像头以及安装在宇航员胸部的一对立体声摄像头以及显示系统和其他组件。在月球遍历期间,IMU通过ZUPT(零速度更新)提供准确的距离估计,并且立体视觉传感器校正由IMU重建的轨迹中方位角的任何漂移。 EKF(扩展卡尔曼滤波器)的设计目的是将来自IMU,胸部安装的立体视觉传感器和空中摄像机的数据整合在一起,以获得高精度的导航解决方案。在类似月球的环境中进行的野外实验的预期结果表明,导航系统可以支持至少6 km的后退场景(在返回着陆器/模块时为宇航员提供指导)。本文提出了一种结合恒星跟踪技术和IMU的月球表面定位方法。实验表明,在当前配置下,该系统能够在月球表面实现3 km的精度。引导式IMU和用于导航的空中摄像机的组合已在实验中进行了测试。该系统在360 m的行程上达到0.57%的显示误差。本文提出的导航系统能够提供精确的导航信息,使登月宇航员能够安全地在月球表面导航,定位科学目标并安全返回着陆器/舱体。

著录项

  • 作者

    He, Shaojun.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Geodesy.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号