首页> 外文学位 >Silicon, germanium, and III-V-based tunneling devices for low-power applications.
【24h】

Silicon, germanium, and III-V-based tunneling devices for low-power applications.

机译:基于硅,锗和III-V的隧道器件,用于低功耗应用。

获取原文
获取原文并翻译 | 示例

摘要

While the scaling of transistor dimensions has kept pace with Moore's Law, the voltages applied to these devices have not scaled in tandem, giving rise to ever-increasing power/heating challenges in state-of-the-art integrated circuits. A primary reason for this scaling mismatch is due to the thermal limit---the 60 mV minimum required at room temperature to change the current through the device by one order of magnitude. This voltage scaling limitation is inherent in devices that rely on the mechanism of thermal emission of charge carriers over a gate-controlled barrier to transition between the ON- and OFF-states, such as in the case of conventional CMOS-based technologies. To overcome this voltage scaling barrier, several steep-slope device concepts have been pursued that have experimentally demonstrated sub-60-mV/decade operation since 2004, including the tunneling-field effect transistor (TFET), impact ionization metal-oxide-semiconductor (IMOS), suspended-gate FET (SG-FET), and ferroelectric FET (Fe-FET). These reports have excited strong efforts within the semiconductor research community toward the realization of a low-power device that will support continued scaling efforts, while alleviating the heating issues prevalent in modern computer chips. Literature is replete with claims of sub-60-mV/decade operation, but often with neglect to other voltage scaling factors that offset this result. Ideally, a low-power device should be able to attain sub-60-mV/decade inverse subthreshold slopes (S) employing low supply and gate voltages with a foreseeable path toward integration.;This dissertation describes the experimental development and realization of CMOS-compatible processes to enhance tunneling efficiency in Si and Si/Ge nanowire (NW) TFETs for improved average S (S avg) and ON-currents (ION), and a novel, III-V-based tunneling device alternative is also proposed. After reviewing reported efforts on the TFET, IMOS, and SG-FET, the TFET is highlighted as the most promising low-power device candidate, owing to its potential to operate within small supply and gate voltage windows. In a critical analysis of the TFET, the advantages of 1-D systems, such as NWs, that can potentially access the so-called quantum capacitance limit (QCL) are discussed, and the remaining challenges for TFETs, such as source/channel doping abruptness, and material tradeoffs are considered. To this end, substantial performance improvements, as measured by Savg and ION, are experimentally realized in top-down fabricated Si NW-TFET arrays by systematically varying the annealing process used to enhance doping abruptness at the source/channel junction---a critical feature for maximizing tunneling efficiency. A combination of excimer laser annealing (ELA) and a low-temperature rapid thermal anneal (LT-RTA) are identified as an optimum choice, resulting in a 36% decrease in Savg as well as ∼500% improvement in ION over the conventional RTA approach. Extrapolation of these results with simulation shows that sub-60-mV/decade operation is possible on a Si-based platform for aggressively scaled, yet realistic, NW-TFET devices. Back-gated NW-FET measurements are also presented to assess the material quality of Ge/Si core/shell NW heterostructures with an n+-doped shell, and these NWs are found to be suitable building blocks for the fabrication of more efficient TFET systems, owing to the very abrupt doping profile at the shell/core (source/channel) interface and smaller bandgap/effective mass of the Ge channel. Finally, low current levels in conventional TFETs have recently led researchers to re-examine III-V heterostructures, particularly those with a broken-gap band alignment to allow a tunneling probability near unity. Along these lines, a novel tunnel-based alternative is presented---the broken-gap tunnel MOS---that enables a constant S 60 mV/decade. The proposed device permits the use of 2-D device architectures without degradation of S given the source-controlled operation mechanism, while simultaneously avoiding undesirable nonlinearities in the output characteristics.
机译:尽管晶体管尺寸的缩放与摩尔定律保持一致,但施加于这些器件的电压并未串联缩放,这在最先进的集成电路中带来了越来越大的功率/加热挑战。这种比例失配的主要原因是由于温度限制-室温下将流经器件的电流改变一个数量级所需的最低60 mV。这种电压缩放限制在依赖于栅极控制的势垒上的电荷载流子的热发射机制以在导通状态和截止状态之间转变的设备中是固有的,例如在传统的基于CMOS的技术中。为了克服这一电压缩放障碍,自2004年以来,人们一直在寻求一些陡峭的器件概念,这些概念已通过实验证明了60mV /十倍以下的运行,其中包括隧穿场效应晶体管(TFET),碰撞电离金属氧化物半导体( IMOS),悬栅FET(SG-FET)和铁电FET(Fe-FET)。这些报告激起了半导体研究界为实现低功率器件而做出的巨大努力,该器件将支持持续的扩展工作,同时减轻现代计算机芯片中普遍存在的发热问题。文献中充斥着低于60 mV /十倍频操作的主张,但往往忽略了抵消该结果的其他电压缩放因子。理想情况下,低功率器件应能够在低电源和栅极电压的情况下达到亚60mV / decade的反向亚阈值斜率(S),并具有可预见的集成途径。为了提高Si和Si / Ge纳米线(NW)TFET的隧穿效率以改善平均S(S avg)和导通电流(ION)的工艺,提出了一种基于III-V的新型隧穿器件替代方案。在回顾了有关TFET,IMOS和SG-FET的报告后,由于其在较小的电源和栅极电压范围内工作的潜力,TFET被认为是最有前途的低功耗器件候选。在对TFET的严格分析中,讨论了可以潜在地访问所谓的量子电容极限(QCL)的1-D系统(例如NW)的优势,以及TFET的其余挑战,例如源/通道掺杂突然性和物质权衡。为此,通过系统地改变用于增强源/沟道结处的掺杂突变的退火工艺,在由上而下制造的Si NW-TFET阵列中通过实验实现了Savg和ION所测量的显着性能改善。最大化隧道效率的功能。准分子激光退火(ELA)和低温快速热退火(LT-RTA)的组合被确定为最佳选择,与传统RTA相比,Savg降低了36%,ION改善了约500%方法。通过仿真对这些结果进行推断,可以得出,在基于Si的平台上,对于激进的规模化但实际的NW-TFET器件,亚60 mV /十倍频操作是可能的。还提出了背栅NW-FET测量,以评估具有n +掺杂壳的Ge / Si核/壳NW异质结构的材料质量,并且发现这些NW是制造更高效TFET系统的合适构建块,由于壳/核(源/通道)界面处的掺杂非常突然,并且Ge通道的带隙/有效质量更小。最后,传统TFET中的低电流水平最近导致研究人员重新检查III-V异质结构,尤其是那些具有禁带排列的结构,以使隧穿可能性接近于统一。沿着这些思路,提出了一种新颖的基于隧道的替代方案-断间隙隧道MOS-使恒定S <60 mV /十倍。所提出的设备允许使用二维设备架构,而在给定源控制操作机制的情况下,不会降低S,同时避免了输出特性中的不良非线性。

著录项

  • 作者

    Smith, Joshua T.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号