首页> 外文学位 >Commutative semifields of odd order and planar Dembowski-Ostrom polynomials.
【24h】

Commutative semifields of odd order and planar Dembowski-Ostrom polynomials.

机译:奇数阶和平面Dembowski-Ostrom多项式的交换半场。

获取原文
获取原文并翻译 | 示例

摘要

Historically, finite commutative semifields have been studied as vector spaces or by the projective plane they coordinatise. Here we study finite commutative semifields from a purely algebraic standpoint. This dissertation is a thorough examination of finite commutative semifields via planar Dembowski-Ostrom (DO) polynomials. There is a one-to-one correspondence between finite commutative presemi-fields and planar DO polynomials. This result of Coulter and Henderson [14] is crucial to the development of this dissertation. We detail the development of this theory, the implications of this approach, search for new examples, and examine the combinatorial structures related to finite commutative semifields.;Chapter 1 outlines the necessary preliminary information, including a list of the known classical finite commutative semifields as well as a partial list of finite commutative semifields that have been discovered since work began on this dissertation. In Chapter 2 we detail the theory of this approach. The multiplication of a finite commutative semifield, R , can be represented by a bivariate polynomial, K( X, Y) = X ☆ Y. Making use of a convenient isotope, one so that x ☆ a = ax for all x ∈ R and a ∈ Nm , we develop the shape of the planar DO polynomial f(X) = K(X, X). Then for any a, b ∈ R we have a ☆ b = f( a + b) -- f(a) -- f(b). This form is then applied to determine what type of equivalences can exist among finite commutative semifields. Finally, we examine the isotopes that can exist between two planar DO polynomials of this shape and present restrictions on the shape of the istopisms.;The implications of Chapter 2 to the known semifields are explored in Chapter 3. Here we determine the general forms for the planar DO polynomials for the classical examples of finite commutative semifields. Additionally, we focus on how this theory can be applied to reprove the classification of commutative semifields whose dimension is four over their nucleus and two over their middle nucleus. This leads to some interesting results regarding planar DO polynomials. In Chapter 6 we exploit the results of Chapter 2 to program and run computer searches in the computer algebra program Magma for finite commutative semifields of order 35, 55, and 38. We outline the methods used and the results. In each case, we discover a new example of a finite commutative semifield.;The next two chapters explore the combinatorial structure closely linked to finite commutative semifields. In Chapter 5 we examine the connection with projective planes and difference sets. The new examples described in Chapter 3 yield new projective planes, and the new example of order 35 yields a new skew Hadamard difference set. Chapter 6 focuses on linear codes. We detail the construction of a linear code from the image of a planar DO polynomial and present some interesting principles regarding the resulting linear codes. Finally we end with Chapter 7 in which we discuss some of the problems left open.
机译:历史上,有限交换半场被研究为向量空间或通过它们协调的投影平面。在这里,我们从纯代数的角度研究有限的交换半场。本文是通过平面Dembowski-Ostrom(DO)多项式对有限交换半场进行的全面研究。有限的交换前半场与平面DO多项式之间存在一一对应的关系。 Coulter和Henderson [14]的结果对本文的发展至关重要。我们详细介绍了该理论的发展,这种方法的含义,寻找新的例子,并研究了与有限可交换半场有关的组合结构。;第1章概述了必要的初步信息,包括一系列已知的经典有限可交换半场,如以及自本文开始工作以来发现的有限交换半场的部分列表。在第二章中,我们详细介绍了这种方法的理论。有限交换半场R的乘法可以用二元多项式K(X,Y)= X☆来表示。 Y.利用一种方便的同位素,使x☆对于所有x∈R和a∈Nm的a = ax,我们发展出平面DO多项式f(X)= K(X,X)的形状。那么对于任何a,b∈R我们有一个☆ b = f(a + b)-f(a)-f(b)。然后将这种形式应用于确定有限可交换半场之间可以存在的等价类型。最后,我们研究了可能存在于这种形状的两个平面DO多项式之间的同位素,并对同位素的形状提出了限制。;在第3章中探讨了第2章对已知半场的含义。在这里,我们确定了有限交换半场经典示例的平面DO多项式。此外,我们集中于如何应用该理论来验证交换半场的分类,该交换半场的尺寸在其核上为四个,在其中核上为两个。这导致有关平面DO多项式的一些有趣结果。在第6章中,我们利用第2章的结果在计算机代数程序Magma中编程和运行计算机搜索,以搜索35、55和38阶的有限可交换半场。我们概述了所使用的方法和结果。在每种情况下,我们都发现了一个有限可交换半场的新例子。接下来的两章将探讨与有限可交换半场紧密联系的组合结构。在第5章中,我们检查了与射影平面和差异集的联系。第3章中描述的新示例产生新的射影平面,而35阶的新示例产生新的偏斜Hadamard差集。第6章重点介绍线性代码。我们从平面DO多项式的图像中详细说明了线性代码的构造,并提出了一些有关所得线性代码的有趣原理。最后,我们以第7章结尾,讨论了一些尚待解决的问题。

著录项

  • 作者

    Kosick, Pamela.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号