首页> 外文学位 >Towards an adaptive interconnect for system-on-chip.
【24h】

Towards an adaptive interconnect for system-on-chip.

机译:面向片上系统的自适应互连。

获取原文
获取原文并翻译 | 示例

摘要

Emerging System-on-Chip (SoC) platforms, such as those for mobile systems, are typically battery-powered systems that have to support a wide range of streaming applications such as video and audio. To meet the high performance requirements for these systems, SoCs integrate various hardware resources such as CPUs, DSPs, Memory and I/O peripherals. These hardware resources normally communicate using a shared medium such as the bus system. For large SoCs, the bus-based schemes become restrictive because they are non-scalable and have higher overheads that adversely impact performance and energy consumption. Network-on-Chip (NoC) architectures were therefore proposed to solve the scalability problem experienced in bus-based SoCs. They incorporate a communication infrastructure defined by a network topology, routers and switches, in order to provide a scalable and high performance interconnection between SoC resources while satisfying the constraints of embedded platforms.;This work: (1) conducts a comprehensive empirical and analytical study to characterize the impact of NoC topology on performance, as well as energy and area requirements; (2) introduces the concept of Field Adaptable NoC (FAN); and (3) proposes the use of Network Calculus as a NoC modeling technique for design space exploration.;The empirical study aimed at exploring different configurations of network on chip has been conducted. Different topologies are selected and analyzed using specific routing and switching methods to check the suitability for NoC. Additionally, since the energy and area are the primary concerns in NoC, models for energy and area are adapted and simulators are built to calculate these metrics.;The static on-chip interconnects, despite their advantages over bus based systems, have latency and throughput that depend on the topology as well as application traffic scenarios. Application-specific optimizations, needed to address this issue, require an adaptable NoC infrastructure to allow in-field customizations. A methodology for augmenting a NoC with a programmable infrastructure that allows application-specific adaptation called Field Adaptable NoC (FAN) is presented. The resulting infrastructure provides the flexibility required to maximize the performance for a given application, while adhering to the system constraints such as energy and area. To evaluate the proposed methodology of the adaptable NoC, the WK-recursive on-chip interconnect as well as the 2D Mesh network are used as case studies.;Performance analysis and evaluation of on-chip interconnect (OCI) architectures are widely based on system level simulation techniques. Due to the time-consuming nature of simulation based approaches, as well as their limitations in providing an understanding on the effects of various design parameters, analytical models for NoCs are essential. Therefore, we introduce Network Calculus for design space exploration and as a suitable analytical modeling tool for estimating and evaluating the performance of on-chip interconnects. One of the primary advantages of Network Calculus is its ability to model network traffic and service in terms of bounds, which enables worst-case analyses to be carried out. To validate this analytical method and demonstrate its applicability for NoC, different scenarios for application traffic are analyzed for different NoC configurations and compared with simulation. The results from the analyses closely match those obtained from the comprehensive empirical study.
机译:新兴的片上系统(SoC)平台(例如用于移动系统的平台)通常是电池供电的系统,必须支持各种流媒体应用程序,例如视频和音频。为了满足这些系统的高性能要求,SoC集成了各种硬件资源,例如CPU,DSP,内存和I / O外设。这些硬件资源通常使用共享介质(如总线系统)进行通信。对于大型SoC,基于总线的方案具有限制性,因为它们不可扩展且具有较高的开销,会对性能和能耗产生不利影响。因此,提出了片上网络(NoC)架构来解决基于总线的SoC中遇到的可伸缩性问题。它们结合了由网络拓扑,路由器和交换机定义的通信基础结构,以便在SoC资源之间提供可扩展的高性能互连,同时满足嵌入式平台的限制。这项工作:(1)进行全面的实证和分析研究表征NoC拓扑对性能以及能源和面积要求的影响; (2)介绍了现场自适应NoC(FAN)的概念; (3)提出使用网络演算作为NoC建模技术进行设计空间探索。;进行了旨在探索片上网络不同配置的实证研究。使用特定的路由和交换方法选择和分析不同的拓扑,以检查NoC的适用性。此外,由于能量和面积是NoC的主要考虑因素,因此对能量和面积的模型进行了调整,并构建了仿真器来计算这些指标;静态片上互连尽管比基于总线的系统具有优势,但具有延迟和吞吐量取决于拓扑以及应用程序流量方案。解决此问题所需的特定于应用程序的优化需要自适应的NoC基础结构以允许进行现场自定义。提出了一种通过可编程基础架构扩展NoC的方法,该方法允许进行针对特定应用的适配,称为现场自适应NoC(FAN)。最终的基础架构提供了给定应用程序最大化性能所需的灵活性,同时遵守了诸如能源和面积之类的系统约束。为了评估所提出的自适应NoC的方法,以WK递归片上互连以及2D Mesh网络为例进行研究;片上互连(OCI)架构的性能分析和评估广泛基于系统级仿真技术。由于基于仿真的方法耗时,并且在了解各种设计参数的影响方面存在局限性,因此NoC的分析模型至关重要。因此,我们引入了网络微积分技术来进行设计空间探索,并作为一种合适的分析建模工具来评估和评估片上互连的性能。网络演算的主要优点之一是能够根据范围对网络流量和服务进行建模,从而可以进行最坏情况的分析。为了验证这种分析方法并证明其适用于NoC,针对不同的NoC配置分析了不同的应用流量场景,并与仿真进行了比较。分析的结果与综合实证研究的结果非常吻合。

著录项

  • 作者

    Suboh, Suboh.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Engineering Computer.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号