首页> 外文学位 >Fast local transient solution of micro-channel heat sink using asymptotic waveform evaluation.
【24h】

Fast local transient solution of micro-channel heat sink using asymptotic waveform evaluation.

机译:使用渐近波形评估的微通道散热器快速局部瞬态求解。

获取原文
获取原文并翻译 | 示例

摘要

Thermal analyses of one-, two- and three-layered micro-channels have been carried out. Seven types of micro-channels have been identified based on all the possible types of flow directions. Finite element method (FEM) is used to discretise the domain into nodes and elements, and then Galerkin's weighted residual method is used to reduce the equation from a second order partial differential equation to a first order ordinary differential equation. Asymptotic waveform evaluation (AWE) then takes over the formulation steps, by obtaining the transient response equation of one node per calculation. The verification of AWE results is done by comparing the transient response equation with FEM, and the steady state results have also been verified by comparing the thermal resistance from other literatures.;Steady state and transient parametric studies have been performed, including the effect of initial conditions, dimensionless parameters like Reynolds number, thermal conductivity ratio between wall and fluid materials, Prandtl number, Nusselt number, and non-uniform heat flux boundary conditions. When the transient response graph is smooth and monotonic towards steady state temperature, AWE approximates this graph well even at small number of moments. However, if the transient response graph shows irregular pattern towards steady state temperature, higher number of moments are required to obtain a good approximation.;Comparisons of results among all micro-channels have also been made in several aspects: CPU time, flow rate, non-uniform heat flux and channel geometry. The CPU time using AWE are compared with results generated using FEM. The effect of flow rate is analysed using two methods: same the flow rate for each layer and for the whole channel. The fluid stream and wall centreline temperature profiles for all micro-channels using non-uniform heat flux are also compared. The channel geometry is analysed using a constant total channel height. Results indicate that three-layered micro-channels give the most reduction in thermal resistance.
机译:已经进行了一层,两层和三层微通道的热分析。基于所有可能的流向类型,已识别出七种类型的微通道。使用有限元法(FEM)将域离散为节点和元素,然后使用Galerkin加权残差法将方程从二阶偏微分方程简化为一阶常微分方程。然后,通过每次计算获得一个节点的瞬态响应方程,渐进波形评估(AWE)接管制定步骤。 AWE结果的验证是通过将瞬态响应方程与FEM进行比较来完成的,稳态结果也已通过比较其他文献中的热阻得到了验证。进行了稳态和瞬态参数研究,包括初始效应条件,无量纲参数,例如雷诺数,壁和流体材料之间的导热系数,普朗特数,努塞尔数和不均匀的热通量边界条件。当瞬态响应图是平稳的并且对稳态温度单调时,即使在极短的瞬间,AWE也会很好地逼近该图。但是,如果瞬态响应图显示出向稳态温度不规则的模式,则需要更多的矩量才能获得良好的近似值。所有微通道之间的结果比较也从多个方面进行了比较:CPU时间,流量,热流和通道几何形状不均匀。将使用AWE的CPU时间与使用FEM生成的结果进行比较。使用两种方法分析流速的影响:每一层和整个通道的流速相同。还比较了使用不均匀热通量的所有微通道的流体流和壁中心线温度曲线。使用恒定的总通道高度分析通道的几何形状。结果表明,三层微通道可最大程度地降低热阻。

著录项

  • 作者

    Beh, Shiao Lin.;

  • 作者单位

    Multimedia University (Malaysia).;

  • 授予单位 Multimedia University (Malaysia).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 260 p.
  • 总页数 260
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号