首页> 外文学位 >Dye-sensitized solar cells based on hierarchical flower-like metal oxide semiconductors.
【24h】

Dye-sensitized solar cells based on hierarchical flower-like metal oxide semiconductors.

机译:基于分层花状金属氧化物半导体的染料敏化太阳能电池。

获取原文
获取原文并翻译 | 示例

摘要

Dye-sensitized solar cells (DSSCs) are widely recognized as one of the most promising of several alternative, cost-effective concepts for solar-to-electric energy conversion that has been offered to challenge conventional Si solar cells over the past two decades. The major components of a DSSC include an n-type semiconductor (e.g., TiO2), a sensitized (i.e., dye), and a redox electrolyte. A sensitizer is chemically tethered to the semiconductor surface by functional anchoring moieties (usually carboxyl group) to harvest a broad range of spectrally distributed light and transfer energy from absorbed photons to excite electrons. TiO2 is one of the most widely used n-type large band gap semiconductor with an energy band gap of 3.2 eV. However, the cell efficiency is limited due to the high charge recombination rate and the low electron mobility characteristics of TiO2.;In this study, we utilized ZnO as the n-type semiconductor to fabricate dye-sensitized flower-like ZnO solar cells as ZnO possesses a wide band gap similar to TiO2 and much higher electron mobility than TiO2. Moreover, ZnO carries advantages of being easy crystallization and anisotropic, making the fabrication process viable. Two methods were employed to craft ZnO nanostructures: hydrothermal and chemical bath deposition, from which hierarchically structured ZnO flowers were yielded. Such hierarchical structures combined the advantages of 1D nanostructures which have direct pathway for electron transport, and nanoparticles which offer a large surface area and thus increased dye loading. In addition, the hierarchical structures also facilitate the light trapping.;The hydrothermal process was systematically explored by varying precursor concentration, alkaline condition, reaction time, and reaction temperature. The precursor of chemical bath deposition approach was different from that of hydrothermal process and thus leads to a different mechanism. All nanostructures were made on fluorine-doped tin oxide (FTO) glass and the morphology was examined by SEM and the composition and crystallinity was verified by XRD. Subsequently, all samples were fabricated into DSSCs. The cell performance was different from different nanostructures and the optimized nanostructures with the highest efficiency were then converted to TiO2. The TiO2 structures were prepared by one-step synthesis (i.e., liquid phase deposition) using the as-prepared ZnO as template. During the deposition process, the dissolution of ZnO and the precipitation of TiO2 occurred simultaneously. Therefore the morphology of TiO2 depended on ZnO nanostructures, yielding a hollow nanotubular structures. After conversion, the TiO2 hierarchical structures on the FTO glass were fabricated into devices and the cell performance was evaluated.
机译:染料敏化太阳能电池(DSSC)被公认为是太阳能到电能转换的几种具有成本效益的替代方案中最有前途的方案之一,在过去的二十年中,这些方案已对传统的Si太阳能电池提出了挑战。 DSSC的主要成分包括n型半导体(例如,TiO 2),敏化的(即,染料)和氧化还原电解质。敏化剂通过功能性锚定部分(通常是羧基)化学束缚在半导体表面上,以收集各种光谱分布的光并将能量从吸收的光子转移到激发电子。 TiO2是能带隙为3.2 eV的最广泛使用的n型大带隙半导体之一。然而,由于TiO 2的高电荷复合率和低电子迁移率特性,电池效率受到限制。;在本研究中,我们将ZnO用作n型半导体来制造染料敏化的花状ZnO太阳能电池作为ZnO。具有类似于TiO2的宽带隙并且比TiO2高得多的电子迁移率。此外,ZnO具有易于结晶和各向异性的优点,使得制造工艺可行。两种方法用于制作ZnO纳米结构:水热沉积和化学浴沉积,从中可得到分层结构的ZnO花。这种分层结构结合了具有直接电子传输途径的一维纳米结构和提供大表面积并因此增加染料负载量的纳米颗粒的优势。另外,分层结构也有利于光捕获。通过改变前驱物浓度,碱性条件,反应时间和反应温度,系统地探索了水热过程。化学浴沉积方法的前体不同于水热法,因此导致了不同的机理。所有纳米结构均在掺氟氧化锡(FTO)玻璃上制成,并通过SEM检查其形貌,并通过XRD验证其组成和结晶度。随后,将所有样品制成DSSC。电池性能不同于不同的纳米结构,然后将效率最高的优化纳米结构转化为TiO2。以制备的ZnO为模板通过一步合成(即液相沉积)制备TiO 2结构。在沉积过程中,ZnO的溶解和TiO2的沉淀同时发生。因此,TiO2的形态取决于ZnO纳米结构,从而产生中空的纳米管状结构。转换后,将FTO玻璃上的TiO2分层结构制成器件并评估电池性能。

著录项

  • 作者

    Liu, Hsiang-Yu.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Alternative Energy.;Engineering Materials Science.;Chemistry Inorganic.
  • 学位 M.S.
  • 年度 2011
  • 页码 66 p.
  • 总页数 66
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号