首页> 外文学位 >A computational study of protein dynamics, structure ensembles, and functional mechanisms.
【24h】

A computational study of protein dynamics, structure ensembles, and functional mechanisms.

机译:蛋白质动力学,结构整合和功能机制的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Proteins are vital parts of living organisms and involved in almost every single biological process. When participating in in-vivo reactions, proteins are constantly in motion and their dynamics is critical to the realization of their functions. Although the advancement of structure determination methods and computational approaches has opened up great opportunities for studying protein dynamics and functional mechanisms, much remains to be understood. In this thesis, I aim to establish some new computational methods for studying protein dynamics and functional mechanisms.;In the first half of this thesis, I will describe the new computational methods for protein dynamics that I have developed. One of the most common methods for obtaining the protein dynamics computationally is molecular dynamics (MD) simulations. Although MD simulations can provide atomic details of the protein dynamics, it is computationally expensive and is thus limited to short time scales, especially for large systems. In this thesis I focus on methods for studying protein dynamics that can circumvent such limitations. Two strategies are employed: (1) represent protein dynamics using weighted structure ensembles; (2) improve existing coarse-grained models with multi-body potentials using generalized spring tensors.;In the second half of the thesis, I investigate the functional mechanisms of ligand migration and allosteric communication using novel, dynamics-based methods. Specifically, two subgoals are defined and accomplished: (1)chart the ligand migration channels in heme proteins using different structure ensembles; (2) determine the allosteric communication pathways using dynamic motion correlations.
机译:蛋白质是生命有机体的重要组成部分,几乎参与每个生物过程。参与体内反应时,蛋白质会不断运动,其动力学对于实现其功能至关重要。尽管结构确定方法和计算方法的进步为研究蛋白质动力学和功能机制开辟了巨大的机会,但仍有许多地方尚待理解。本文旨在建立一些新的计算方法来研究蛋白质动力学和功能机理。本文的前半部分将介绍我开发的蛋白质动力学的新计算方法。通过计算获得蛋白质动力学的最常用方法之一是分子动力学(MD)模拟。尽管MD模拟可以提供蛋白质动力学的原子细节,但它在计算上昂贵,因此仅限于短时间范围,尤其是对于大型系统。在本文中,我重点研究了可以克服这些局限性的蛋白质动力学研究方法。采用两种策略:(1)使用加权结构集合表示蛋白质动力学; (2)使用广义弹簧张量改进现有的具有多体势能的粗粒度模型。在论文的后半部分,我将基于新颖的动力学方法研究配体迁移和变构通讯的功能机制。具体来说,定义并完成了两个子目标:(1)使用不同的结构图绘制血红素蛋白中的配体迁移通道; (2)使用动态运动相关性确定变构通讯途径。

著录项

  • 作者

    Lin, Tu-Liang.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Biology Bioinformatics.;Computer Science.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号