首页> 外文学位 >Simulation of Carbon Dioxide Capture from Reformate Gas Using 30 wt.% Monoethanolamine (MEA).
【24h】

Simulation of Carbon Dioxide Capture from Reformate Gas Using 30 wt.% Monoethanolamine (MEA).

机译:使用30 wt。%单乙醇胺(MEA)从重整气中捕获二氧化碳的模拟。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogen is usually produced by steam reforming of natural gas in large-scale processes. The growing demand for H2 production also means the increasing release of large amounts of CO2. Because of its greenhouse effect, it becomes very essential to remove CO2 from such plants. Also, the removal of CO2 is a very essential step in purifying the hydrogen produced. Carbon dioxide absorption using monoethanolamine (MEA) is considered as a promising technology to remove CO2. However, the major drawback of this system is the energy used during the solvent regeneration step. Therefore, reducing the energy consumption in the regeneration unit (re-boiler heat duty) of the capture process becomes very important in order to improve the process performance and make this process more economically feasible.;This work presents modified process strategies to capture CO2 from reformate gas by using 30 wt.% MEA in order to obtain the minimum energy requirement. The approach is to simulate and optimize the base line conventional CO2 capture process, and then modify the conventional process to minimize the energy used. The modified processes of this work include the reformate gas heat utilization and a split flow process configuration. The models were applied to three different CO2 recovery efficiencies; 90%, 95% and 99% from the reformate gas. The optimum thermal energy requirement for the base case at 90% CO2 recovery was found to be 3.139 GJ/ton CO2, 95% and 99% CO2 recovery were 3.202 and 3.815 GJ/ton CO2, respectively. The process simulation results showed that the external energy requirement for the re-boiler can be saved by using the reformate gas heat utilization process by supplying the heat directly to the re-boiler. Energy savings were 56.8% with 90% CO2 recovery, 52.9% and 42.59% with 95% and 99% of CO2 recovery, respectively as compared to the base case schemes. The external energy requirement for the re-boiler can also be minimized by using a comprehensive process integration configuration by 13.98% (90% CO2 recovery) and 12.2% (95% CO2 recovery) compared to the base case. However, the result from 99% CO2 recovery showed a higher energy requirement than the base case by 2.67%. This is due to the fact that the lean amine temperature of the split flow process is higher than the base line process. With a combination of the two strategies, the reformate gas heat utilization and the split flow process configuration, the external energy requirement for CO2 capture from reformate gas process was reduced by 70.78% for 90% CO2 recovery, 64.9% and 39.97% for 95% and 99% CO2 recovery, respectively, compared to the base line process.
机译:氢气通常是通过大规模过程中天然气的蒸汽重整而产生的。对氢气生产的需求不断增长也意味着大量二氧化碳的释放增加。由于其温室效应,因此从此类植物中去除CO2变得非常重要。另外,除去CO 2是纯化产生的氢气中非常重要的步骤。使用单乙醇胺(MEA)吸收二氧化碳被认为是去除CO2的有前途的技术。但是,该系统的主要缺点是溶剂再生步骤中使用的能量。因此,减少捕集过程的再生单元中的能量消耗(再沸器热负荷)对于提高过程性能并使该过程在经济上更加可行非常重要。通过使用30%(重量)的MEA来重整天然气,以获得最低的能源需求。该方法是模拟和优化常规的常规CO2捕集工艺,然后修改常规工艺以最小化能耗。这项工作的改进方法包括重整气的热利用和分流工艺配置。该模型被应用于三种不同的二氧化碳回收效率。 90%,95%和99%来自重整气。在90%的CO2回收率下,基本案例的最佳热能需求为3.139 GJ /吨CO2,95%和99%的CO2回收率分别为3.202 GJ /吨CO2和3.815 GJ /吨CO2。过程仿真结果表明,通过使用重整气热量利用工艺,将热量直接提供给再沸器,可以节省再沸器的外部能量需求。与基本方案相比,节能率分别为56.8%(CO2回收率为90%),52.9%和42.59%(CO2回收率为95%和99%)。与基本情况相比,通过使用全面的过程集成配置,再沸器的外部能源需求也可以最小化,分别达到13.98%(回收率90%)和12.2%(回收率95%)。但是,从99%的CO2回收率得出的结果表明,其能源需求比基本情况高2.67%。这是由于以下事实:分流工艺的贫胺温度高于基线工艺。通过重整气利用和分流工艺配置这两种策略的组合,从重整气工艺中捕集CO2所需的外部能量分别降低了70.78%(回收率90%),64.9%和39.97%(95%)。与基准流程相比,二氧化碳回收率分别为99%和99%。

著录项

  • 作者

    Piewkhaow, Lakkana.;

  • 作者单位

    The University of Regina (Canada).;

  • 授予单位 The University of Regina (Canada).;
  • 学科 Engineering Environmental.
  • 学位 M.A.Sc.
  • 年度 2011
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号