首页> 外文学位 >Mechanical and material characterization of bilayer microcantilevers for MEMS-based IR detector applications.
【24h】

Mechanical and material characterization of bilayer microcantilevers for MEMS-based IR detector applications.

机译:用于基于MEMS的IR检测器应用的双层微悬臂梁的机械和材料表征。

获取原文
获取原文并翻译 | 示例

摘要

Uncooled micro-electro-mechanical systems (MEMS)-based infrared radiation (IR) detectors have received extensive attention for wide use in military and civilian applications such as for night vision, environmental monitoring, biomedical diagnostics, remote sensing, and thermal probing of active microelectronic devices. These detectors utilize the bending of bilayer microcantilevers upon absorption of IR to form thermal images. While these MEMS-based IR detectors have many benefits over photon detectors, the residual stress-induced curvature after fabrication and inelastic deformation greatly compromise their performance. Recently, a composite material, silicon oxynitride (SiON), which has a unique tunability in IR absorption spectrum, has been proposed to replace the conventional IR absorption material such as silicon nitride (Si3N4) in IR detectors. This composite material enhances the sensitivity to selective targets, which emit IR at particular wavelength. However, the mechanical properties of the composite material have seldom been studied. Accurate mechanical and material characterization is crucial to ensure performance and reliability.;This dissertation addresses three important fundamental technical issues for the next-generation of high-sensitivity and tunable MEMS-based IR detectors: (1) planarization; (2) long-term behavior prediction of Si3N 4/AI bilayer microcantilevers; and (3) mechanical and material properties characterization of silicon oxynitride thin films. This research provides a comprehensive mechanical and material characterization of the temperature- and time-dependent thermomechanical responses of the Si3N 4/AI bilayer microcantilever beams under different thermal loading. Experimental methodologies, theoretical models and finite element analysis (FEA) models are developed to achieve flattened bilayer microcantilevers, and to predict the temperature- and time-dependent deformation of MEMS-based IR detectors in short- and long-term operation. In addition, the mechanical and material properties of the silicon oxynitride thin films are systematically studied using nanoindentation for mechanical characterization, energy dispersive X-ray analysis (EDX) for material composition, and Fourier transform infrared spectrometry (FT-IR) for optical characterization.;The experimental methodologies and theoretical framework developed in this research can be readily applied to study the thermomechanical behavior of various bilayer microcantilever structures, and to improve the fundamental understanding required to design high-sensitivity and tunable MEMS-based IR detectors.
机译:基于非制冷微机电系统(MEMS)的红外辐射(IR)检测器已受到广泛关注,广泛用于军事和民用应用中,例如夜视,环境监测,生物医学诊断,遥感以及有源探测器的热探测微电子设备。这些探测器利用吸收红外光时双层微悬臂梁的弯曲来形成热图像。尽管这些基于MEMS的IR检测器比光子检测器具有许多优势,但制造后残留应力引起的曲率和非弹性变形会极大地损害其性能。近来,已经提出了一种复合材料氧氮化硅(SiON),其在红外吸收光谱中具有独特的可调谐性,以代替传统的红外吸收材料,例如红外检测器中的氮化硅(Si 3 N 4)。这种复合材料增强了对选择性目标的敏感性,选择性目标在特定波长下发射IR。但是,很少研究复合材料的机械性能。准确的机械和材料表征对于确保性能和可靠性至关重要。本文针对下一代高灵敏度和可调谐MEMS的IR探测器解决了三个重要的基本技术问题:(1)平面化; (2)Si3N 4 / Al双层微悬臂梁的长期行为预测; (3)氧氮化硅薄膜的机械和材料性能表征。这项研究提供了在不同热负荷下Si3N 4 / Al双层微悬臂梁的温度和时间相关的热力学响应的综合力学和材料表征。开发实验方法,理论模型和有限元分析(FEA)模型以实现扁平的双层微悬臂梁,并预测基于MEMS的红外探测器在短期和长期运行中随温度和时间而产生的变形。此外,系统地研究了氮氧化硅薄膜的机械和材料性能,其中包括用于机械表征的纳米压痕,用于材料成分的能量色散X射线分析(EDX)和用于光学表征的傅立叶变换红外光谱(FT-IR)。 ;这项研究中开发的实验方法和理论框架可以很容易地应用于研究各种双层微悬臂梁结构的热力学行为,并提高设计基于高灵敏度和可调谐MEMS的红外探测器所需的基本知识。

著录项

  • 作者

    Lin, I-Kuan.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号