首页> 外文学位 >Thermal modeling of workpiece temperature and distortion in MQL deep-hole drilling.
【24h】

Thermal modeling of workpiece temperature and distortion in MQL deep-hole drilling.

机译:MQL深孔钻削中工件温度和变形的热模型。

获取原文
获取原文并翻译 | 示例

摘要

This research investigates the workpiece temperature and distortion in minimum quantity lubrication (MQL) deep-hole drilling. Due to the advantages of reducing machining cost and environmental impact, MQL has been widely implemented in production. However, deep-hole drilling is technically challenging for MQL application due to the poor capability for workpiece cooling. This research focuses on quantifying the heat flow to the workpiece as a function of depth and time and the associated thermal distortion in MQL deep-hole drilling.;Heat sources in deep-hole drilling are not only from the drill-workpiece interface on the hole bottom surface (HBS), but also through the hole wall surface (HWS) due to high temperature chips and drill margin friction. The resulting heat flux from these factors on HWS is solved by the inverse heat transfer method. This method has demonstrated to be able to estimate the temporal and spatial distributions of HWS heat flux in both dry and MQL conditions. The importance of HWS heat flux in deep-hole drilling of ductile iron has also been analyzed.;In MQL deep-hole drilling, air pressure and feed rate are important in HWS heat flux and workpiece temperature. These effects are investigated in a production MQL system and analyzed by the inverse heat transfer method. Chip accumulation under slow feed rate and low air pressure has shown to increase the heat flux on HWS significantly without being inspected by drilling torque and thrust force. Although the high air pressure can maintain a smooth chip evacuation under a slow drilling feed rate, it does not provide further improvement when the chips are evacuated properly under a high feed rate.;Based on the heat flux calculation, a 3-D finite element model is developed to predict the workpiece thermal distortion. This model excludes the advection removal of elements and the mechanical contact between drill and workpiece, thus it is more practical for implementation due to the reduced computation time. The accuracy of the model prediction is validated by measuring the distortion of an aluminum workpiece after drilling four deep-holes. Potential applications of this model include error compensation, optimization of clamping design and machining sequence.
机译:这项研究调查了最小限度润滑(MQL)深孔钻削中的工件温度和变形。由于降低了加工成本和环境影响的优势,MQL已在生产中得到广泛实施。但是,由于工件冷却能力差,深孔钻孔对于MQL应用在技术上具有挑战性。这项研究的重点是量化与深度和时间以及MQL深孔钻削相关的热变形有关的工件热流。;深孔钻削中的热源不仅来自孔上的钻头-工件界面底部表面(HBS),但也会由于孔壁表面(HWS)的高温切屑和钻头余量而产生摩擦。这些因素在HWS上产生的热通量可通过逆传热方法解决。该方法已证明能够在干燥和MQL条件下估算HWS热通量的时间和空间分布。还分析了HWS热通量在球墨铸铁深孔钻削中的重要性。在MQL深孔钻削中,气压和进给速度对HWS热通量和工件温度至关重要。在生产MQL系统中研究了这些影响,并通过逆传热方法进行了分析。在低进给速度和低气压下的切屑堆积已显示出可以显着增加HWS的热通量,而无需通过钻孔扭矩和推力进行检查。尽管高气压可以在缓慢的进给速率下保持排屑顺畅,但当在高进给速率下适当排空切屑时,无法提供进一步的改善。;基于热通量计算,3-D有限元建立模型以预测工件的热变形。该模型不包括元素的对流移除以及钻头与工件之间的机械接触,因此由于减少了计算时间,因此在实施中更为实用。通过测量铝制工件在钻四个深孔后的变形,可以验证模型预测的准确性。该模型的潜在应用包括误差补偿,优化夹紧设计和加工顺序。

著录项

  • 作者

    Tai, Li-Jung.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号