首页> 外文学位 >Biochemistry of chromium(VI) reduction: Formation, fate, and implications of soluble organo-chromium(III) complexes on the biogeocycle of chromium.
【24h】

Biochemistry of chromium(VI) reduction: Formation, fate, and implications of soluble organo-chromium(III) complexes on the biogeocycle of chromium.

机译:铬(VI)还原的生物化学:可溶性有机铬(III)配合物的形成,结局及其对铬生物地球周期的影响。

获取原文
获取原文并翻译 | 示例

摘要

Chromium is widely distributed in the environment, existing in either the +3 or +6 state under environmental conditions. Trivalent chromium [Cr(III)] is the predominant oxidation state and considered relatively insoluble and non-toxic. In contrast, hexavalent chromium [Cr(VI)] forms oxyanions, i.e. CrO4-, at neutral pH, which are highly soluble and mobile in groundwater. Chromium is an important metal for use in industry based on its corrosion resistant properties. Large amounts of Cr(VI) have been introduced into the environment as industrial waste, posing a significant contamination problem requiring remediation.; Bioremediation has been proposed as a method for treating Cr(VI) contamination. Many bacteria reduce Cr(VI), but the reduction mechanism(s) and end-products are poorly understood. Research presented here focuses on understanding the biochemistry of Cr(VI) reduction and the Cr(III) end-products formed. An Escherichia coli NAD(P)H:flavin oxidoreductase was found to reduce Cr(VI) via free reduced flavins. This system rapidly reduced chromate, whereas chemical reduction by NADH and glutathione was very slow. The reduced end-product was identified as a soluble and stable complex composed of multiple Cr(III) ions bound to NAD+, NAD+-Cr(III), instead of Cr(III) precipitate as expected for microbial reduction of Cr(VI). We further demonstrated that Cr(VI) reduction in the presence of several individual intracellular organic compounds formed soluble organo-Cr(III) end-products, which remained soluble and stable upon dialysis against H2O and over a broad pH range. The fate and recalcitrance of these soluble organo-Cr(III) complexes in the environment were unknown. Microbial transformation of soluble organo-Cr(III) end-products was discovered. Two bacteria, PTX1 and PTX2, utilizing an organo-Cr(III) complex, NAD+-Cr(III), were isolated. Phylogenetic classification designated PTX1 as a Leifsonia species and PTX2 as a Rhodococcus species, both common soil bacteria. The bacteria utilize the NAD+ in the NAD+-Cr(III) complex as a carbon and energy source. Mineralization of the NAD+-Cr(III) resulted in precipitation of Cr(III) on the bacterial surface, signaling a probable long term insoluble Cr(III) form.; This work furthers the knowledge of mechanisms proposed to play a role in Cr(VI) reduction and expands the biogeocycle of Cr to include the formation of soluble organo-Cr(III) species and microbial mineralization of these species to produce an insoluble Cr(III) form.
机译:铬广泛分布在环境中,在环境条件下以+3或+6状态存在。三价铬[Cr(III)]是主要的氧化态,被认为是相对不溶且无毒的。相反,六价铬[Cr(VI)]在中性pH下形成氧阴离子,即CrO4-,它们在地下水中高度可溶且可移动。铬因其耐腐蚀性能而成为工业上重要的金属。大量的六价铬已作为工业废料引入环境,造成了严重的污染问题,需要补救。已经提出生物修复作为治疗Cr(VI)污染的方法。许多细菌会还原Cr(VI),但是对还原机理和最终产物的了解却很少。本文介绍的研究重点是了解还原Cr(VI)和形成的Cr(III)终产物的生物化学。发现大肠杆菌NAD(P)H:黄素氧化还原酶通过游离还原的黄素还原Cr(VI)。该系统可快速还原铬酸盐,而NADH和谷胱甘肽的化学还原非常缓慢。还原的最终产物被确定为一种可溶性和稳定的络合物,由与NAD +,NAD + -Cr(III)结合的多个Cr(III)离子组成,而不是预期的微生物还原Cr(VI)所需的Cr(III)沉淀物。我们进一步证明,在几种单独的细胞内有机化合物的存在下,Cr(VI)的还原形成了可溶的有机-Cr(III)终产物,该终产物在针对H2O进行透析并在较宽的pH范围内保持可溶和稳定的状态。这些可溶性有机-Cr(III)配合物在环境中的去向和顽固性尚不清楚。发现了可溶性有机Cr(III)终产物的微生物转化。利用有机-Cr(III)配合物NAD + -Cr(III)分离了两种细菌PTX1和PTX2。在系统发育分类中,PTX1为利福氏菌属,PTX2为红球菌属,都是常见的土壤细菌。细菌利用NAD + -Cr(III)络合物中的NAD +作为碳和能源。 NAD + -Cr(III)的矿化导致Cr(III)在细菌表面沉淀,表明可能是长期不溶的Cr(III)形式。这项工作进一步了解了拟议的在Cr(VI)还原中起作用的机制的知识,并扩大了Cr的生物地球周期,以包括可溶性有机Cr(III)物种的形成和这些物种的微生物矿化以产生不溶性Cr(III)。 )形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号