首页> 外文学位 >Post-transcriptional control of the essential autolysin RipA in Mycobacterium tuberculosis.
【24h】

Post-transcriptional control of the essential autolysin RipA in Mycobacterium tuberculosis.

机译:结核分枝杆菌中必需自溶素RipA的转录后控制。

获取原文
获取原文并翻译 | 示例

摘要

The peptidoglycan layer is an essential conserved structure that provides bacteria with shape and structural integrity. It is also a dynamic compartment that is continually modified to accommodate growth, division, and adaptation to stressful environments. Peptidoglycan regulation is critical for the survival of the pathogen, Mycobacterium tuberculosis, both in vitro and during host infection. Characterizing how the peptidoglycan structure is created and remodeled provides new avenues for chemotherapy, as well as insights into one of the most basic, yet poorly understood, bacterial regulatory processes. In order to understand how mycobacteria control peptidoglycan remodeling, I studied the regulation of an essential septal endopeptidase, RipA.;Depletion of RipA in mycobacteria causes daughter cells to chain, while dysregulation of the enzyme by overexpression or antibiotic treatment converts RipA into a lethal autolysin. Thus, the cell must tightly control RipA activity during growth. One way that RipA is regulated is through the formation of holoenzyme complexes---dysregulation of RipA interactions in vivo using dominant negative analysis leads to chaining, as well as cell lysis. To identify RipA complex members, I carried out yeast two-hybrid screens. Here, I characterize two interacting partners for RipA---the lysozyme RpfB and the peptidoglycan synthase PBP1. The RipA-RpfB complex synergistically degrades peptidoglycan, while PBP1 antagonizes this synergy, suggesting that RipA can switch partners to fine-tune its hydrolytic capability. In addition to complex formation, RipA in vivo is also regulated through proteolysis. Through western blot analyses, I demonstrate that processing is required for RipA enzymatic activation. This processing relies partly on C terminal protein-protein interactions, which likely target RipA to cognate proteases.;From my results, I propose a model where RipA is localized at the septum through protein-protein interactions. These interactions aid RipA cleavage and activation only when the cell requires peptidoglycan hydrolysis. After processing, downstream RipA interactions may allow additional temporal control of peptidoglycan remodeling. Finally, slow-growing mycobacteria have reduced RipA cleavage, which may represent a way to synchronize peptidoglycan hydrolysis with the slower growth rate of the bacterium. Therefore, dysregulating RipA is highly toxic and may represent a new avenue for developing novel tuberculosis chemotherapeutics.
机译:肽聚糖层是必不可少的保守结构,可为细菌提供形状和结构完整性。它也是一个动态隔间,可以不断修改以适应生长,分裂和对压力环境的适应。肽聚糖调节对于病原体结核分枝杆菌在体外和宿主感染期间的生存至关重要。表征肽聚糖结构的形成和重塑方式为化学疗法提供了新途径,并为最基本但知之甚少的细菌调节过程之一提供了见识。为了了解分枝杆菌如何控制肽聚糖的重塑,我研究了必需的间隔内肽酶RipA的调节;分枝杆菌中RipA的缺失会导致子代细胞链化,而过表达或抗生素处理引起的酶失调会将RipA转化为致死的自溶素。 。因此,细胞必须在生长过程中严格控制RipA活性。调节RipA的一种方法是通过形成全酶复合物-使用显性阴性分析的体内RipA相互作用失调会导致连锁以及细胞裂解。为了鉴定RipA复合体成员,我进行了酵母双杂交筛选。在这里,我描述了RipA的两个相互作用伙伴-溶菌酶RpfB和肽聚糖合酶PBP1。 RipA-RpfB复合物协同降解肽聚糖,而PBP1拮抗这种协同作用,表明RipA可以切换伙伴以微调其水解能力。除了形成复合物外,体内RipA还通过蛋白水解来调节。通过蛋白质印迹分析,我证明了RipA酶促活化需要加工。该过程部分依赖于C末端蛋白-蛋白相互作用,这可能将RipA靶向同源蛋白酶。仅当细胞需要肽聚糖水解时,这些相互作用才有助于RipA裂解和激活。处理后,下游RipA相互作用可能允许肽聚糖重塑的其他时间控制。最后,缓慢生长的分枝杆菌具有减少的RipA裂解,这可能是一种使肽聚糖水解与细菌较慢的生长速率同步的方法。因此,RipA失调具有剧毒作用,可能代表开发新型结核化学疗法的新途径。

著录项

  • 作者

    Chao, Michael.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号