首页> 外文学位 >Exploiting Sparsity for Data Dimensionality-Reduction.
【24h】

Exploiting Sparsity for Data Dimensionality-Reduction.

机译:利用稀疏性来减少数据维数。

获取原文
获取原文并翻译 | 示例

摘要

Data compression has well-appreciated impact in audio, image and video processing since the increasing data rates cannot be matched by the computational and storage capabilities of existing processing units. The cornerstone modules of modern digital compression systems are those performing dimensionality reduction and quantization. Dimensionality reduction projects the data onto a space of lower dimension while minimizing an appropriate figure of merit that quantifies information loss. Quantization amounts to digitizing the analog-amplitude, reduced-dimensionality data. Typically, dimensionality reduction relies on training vectors to find parsimonious data representations with minimal redundancy without inducing significant distortion in the reconstruction process.;Among other signal characteristics used for compression, a critical one dealt with in this thesis is sparsity. Sparsity is an attribute characterizing many natural and man-made signals, and has been used extensively in signal processing to solve underdetermined systems of equations and perform variable selection. The bulk of existing literature has focused on exploiting sparsity structures that are present in the data. However, sparsity may oftentimes appear in statistical descriptors, such as covariance matrices, and not the data themselves. Statistical descriptors are instrumental when it comes to data dimensionality reduction and compression. Sparsity in such data descriptors can be exploited to boost performance of existing dimensionality reducing and reconstruction modules.;Specifically, the presence of sparsity in the eigenspace of signal covariance matrices is studied and exploited for data compression and denoising. The dimensionality reduction and quantization modules are redesigned to capitalize on such forms of sparsity and achieve improved reconstruction performance compared to existing sparsity-agnostic codecs. Using training data that may be noisy, a novel sparsity-aware linear dimensionality-reduction scheme is developed to fully exploit covariance-domain sparsity and form noise-resilient estimates of the principal covariance eigen-basis. Sparsity is effected via norm-one regularization, and the associated minimization problems are solved using computationally efficient coordinate descent iterations. Adaptive implementations that allow online data processing are also explored. The resulting covariance eigenspace estimator is shown capable of identifying a subset of the unknown support of the eigenspace basis vectors even when the observation noise covariance matrix is unknown, as long as the noise power is sufficiently low. It is established that the sparsity-aware estimator is asymptotically normal, and the probability to correctly identify the signal subspace basis support approaches one, as the number of training data grows large. The sparsity-aware dimensionality reducing scheme is further combined with vector quantization to obtain a sparsity-cognizant transform coding scheme capitalizing on covariance-domain sparsity for data compression, reconstruction and denoising. Finally, simulations using synthetic data and images, corroborate that the proposed algorithms achieve improved reconstruction quality relative to alternatives.
机译:数据压缩在音频,图像和视频处理中具有明显的影响,因为增加的数据速率无法与现有处理单元的计算和存储功能相匹配。现代数字压缩系统的基础模块是执行降维和量化的模块。降维将数据投影到较低维的空间,同时将量化信息丢失的适当品质因数最小化。量化等于数字化模拟幅度,降维数据。通常,降维依赖于训练向量来找到具有最小冗余度的简约数据表示,而不会在重建过程中引起明显的失真。在用于压缩的其他信号特征中,本文所处理的一个关键是稀疏性。稀疏性是表征许多自然和人造信号的属性,已广泛用于信号处理中以解决方程组的不确定性并执行变量选择。现有文献的大部分集中在利用数据中存在的稀疏结构。但是,稀疏性通常可能出现在统计描述符中,例如协方差矩阵,而不是数据本身。当涉及到数据降维和压缩时,统计描述符非常有用。可以利用这种数据描述符中的稀疏性来提高现有降维和重构模块的性能。具体来说,研究信号协方差矩阵的本征空间中稀疏性的存在并将其用于数据压缩和去噪。重新设计了降维和量化模块,以利用这种形式的稀疏性,并且与现有的与稀疏性无关的编解码器相比,可以获得更高的重建性能。利用可能嘈杂的训练数据,开发了一种新颖的稀疏感知线性降维方案,以充分利用协方差域稀疏性并形成主要协方差本征基的抗噪估计。稀疏度通过范数一正则化来实现,并且相关联的最小化问题使用计算效率高的坐标下降迭代来解决。还探讨了允许在线数据处理的自适应实现。示出了所得的协方差本征空间估计器,即使观察噪声协方差矩阵未知,只要噪声功率足够低,就能够识别本征空间基向量的未知支持的子集。已经确定稀疏感知估计量是渐近正态的,并且随着训练数据数量的增加,正确识别信号子空间基础支持的概率接近1。稀疏感知的降维方案进一步与矢量量化相结合,获得了利用协方差域稀疏性进行数据压缩,重构和去噪的稀疏识别变换编码方案。最后,使用合成数据和图像进行的仿真证实了所提出的算法相对于替代方法具有更高的重建质量。

著录项

  • 作者

    Schizas, Ioannis D.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号