首页> 外文学位 >Compressive sensing and wireless network capacity with performance analysis.
【24h】

Compressive sensing and wireless network capacity with performance analysis.

机译:压缩感知和无线网络容量以及性能分析。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, five research works have been included. In chapter 1, we studied the performances of a noncoherent slow frequency-hopping system with M-ary frequency-shift-keyed modulation (NC-FH/MFSK) under various hostile jamming strategies. Then, the knowledge obtained is used in developing a new "combined-jamming" interference model. The model can be used in analyzing the performance of an NC-FH/MFSK networks, where transmissions from each network node can interfere with one another. An example application of the proposed model is the channel assignment in a multiradio FH/MFSK wireless mesh networks (MR-FH/MFSK WMNs).;In chapter 2, we still focus on the multiradio frequency-hopping wireless mesh networks (MR-WMN). However, the scope of our study is wider. Instead of having each node using NC-FH/MFSK modulation only, in this chapter we consider the a wider variety of modulation choices, such as M-PSK or M-QAM. To improve the throughput of MR-WMN, we introduce the space-time block coding (STBC) technique in the physical layer together with a MAC-layer channel management to combat against two major sources of deteriorations in wireless communications, the fading channel and cochannel interferences. With STBC technique, both temporal and spatial diversities can be deployed; hence, the link performance can be improved from the effect of the fading channel. Then, to protect the link from cochannel interferences, an interference-aware algorithm is used to carefully bind the radio interfaces of the nodes to the frequency channels. Within the study, we also propose an additional adaptive transmission scheme to aids in deciding an optimal number of antennas and selecting the best antenna set for the pending transmission.;In chapter 3, we investigate the capacity of wireless hybrid networks, in which a wired network of base stations is used to support very long-range communications between wireless nodes. We introduce the multiple access technique by allowing more than one source node to transmit simultaneously and utilizing successive interference cancellation to decode information at the destination node. Our results show that, for a hybrid network containing n wireless nodes and a wired infrastructure of b = o( n/log n) base stations, with the multiple access concept, the destination or the nearest base stations can receive information from the source nodes at rate O( (b/ n) log (n/b)). But, when data is delivered to node, because the base station is the only transmitter in the cell, it can forward the message to each node only at rate theta( b/n), which can be further improved by deploying an antenna array or increasing the transmission power of the base stations.;In the last two parts of the dissertation, we have shifted our attention to another emerging research field on the compressive sensing (CS), which is considered as method to capture and represent compressible signals at a rate significantly below the Nyquist rate. In chapter 4, we consider the compressive sensing scheme from the information theory point of view and derive the lower bound of the probability of error for CS when length N of the information vector is large. The result has been shown that, for an i.i.d. Gaussian distributed signal vector with unit variance, if the measurement matrix is chosen such that the ratio of the minimum and maximum eigenvalues of the covariance matrices is greater or equal to 4/(M/ K+1), then the probability of error is lower bounded by a non-positive value; which implies that the information can be perfectly recovered from the CS scheme. On the other hand, if the measurement matrix is chosen such that the minimum and maximum eigenvalues of the covariance matrices are equal, then the error is certain and the perfect recovery can never be achieved.;One of the major challenges in the CS technique is how to design a reconstruction algorithm that can perfectly recover the compressed information. It is known that a family of algorithms using Orthogonal Matching Pursuit (OMP) technique can offer fast reconstruction and simple geometry interpretation. However, when the compressed observation contains a great amount of noises, the performance of the OMP-based algorithms drops substantially. In chapter 5, we proposed a fuzzy forecasting reconstruction algorithm, which can helps improving the OMP-based reconstruction algorithm. Relying on a collection of the less noisy past information, the algorithm extracts the knowledge about the values of the current compressed information then, using such knowledge together with the noisy observation received, it can better extract both the values and the locations of the sparse coefficients in the information vector. The simulation results have shown that, compared to a standard OMP algorithm performance, an improvement in the ratio of signal to reconstruction error of up to 2 dB, at SNR=15dB, can be achieved using the proposed approach.
机译:本论文包括五项研究工作。在第一章中,我们研究了在多种敌对干扰策略下具有M元频移键控调制(NC-FH / MFSK)的非相干慢跳频系统的性能。然后,将获得的知识用于开发新的“组合干扰”干扰模型。该模型可用于分析NC-FH / MFSK网络的性能,其中来自每个网络节点的传输会相互干扰。该模型的示例应用是在多无线电FH / MFSK无线网状网络(MR-FH / MFSK WMNs)中的信道分配。;在第2章中,我们仍将重点放在多无线电跳频无线网状网络(MR-WMN)上。 )。但是,我们的研究范围更广。在本章中,我们将考虑更广泛的调制选择,例如M-PSK或M-QAM,而不是让每个节点仅使用NC-FH / MFSK调制。为了提高MR-WMN的吞吐量,我们在物理层中引入了空时分组编码(STBC)技术以及MAC层信道管理,以应对无线通信恶化的两个主要根源,即衰落信道和同信道干扰。利用STBC技术,可以部署时间和空间多样性。因此,可以从衰落信道的影响中改善链路性能。然后,为了保护链路免受同信道干扰,使用了一种可识别干扰的算法,将节点的无线电接口小心地绑定到频道。在研究中,我们还提出了一种额外的自适应传输方案,以帮助确定最佳天线数量并为即将进行的传输选择最佳天线组。在第3章中,我们研究了无线混合网络的容量,其中有线基站网络用于支持无线节点之间的超远程通信。我们通过允许多个源节点同时进行传输并利用连续的干扰消除对目标节点处的信息进行解码来介绍多址技术。我们的结果表明,对于包含n个无线节点和b = o(n / log n)个基站的有线基础结构的混合网络,采用多址访问概念,目标基站或最近的基站可以从源节点接收信息以速率O((b / n)log(n / b))。但是,当数据传递到节点时,由于基站是该小区中唯一的发射机,因此它只能以theta(b / n)的速率将消息转发到每个节点,这可以通过部署天线阵列或天线来进一步改善。在论文的后两部分,我们将注意力转移到了压缩感知(CS)的另一个新兴研究领域,该领域被认为是一种捕获和表示可压缩信号的方法。速率大大低于奈奎斯特速率。在第4章中,我们从信息论的角度考虑了压缩感知方案,并推导了当信息向量的长度N大时CS的错误概率的下限。结果表明,对于一个i.d.具有单位方差的高斯分布信号矢量,如果选择测量矩阵以使协方差矩阵的最小特征值和最大特征值之比大于或等于4 /(M / K + 1),则出错的可能性较低受非正值限制;这意味着可以从CS方案中完美地恢复信息。另一方面,如果选择测量矩阵以使协方差矩阵的最小特征值和最大特征值相等,则误差是确定的,并且无法实现完美的恢复。; CS技术的主要挑战之一是如何设计一种可以完美恢复压缩信息的重建算法。众所周知,使用正交匹配追踪(OMP)技术的一系列算法可以提供快速的重构和简单的几何解释。但是,当压缩的观测值包含大量噪声时,基于OMP的算法的性能将大大下降。在第五章中,我们提出了一种模糊预测重建算法,可以帮助改进基于OMP的重建算法。该算法依靠收集的噪声较小的过去信息,提取有关当前压缩信息值的知识,然后将这些知识与接收到的噪声观测值一起使用,可以更好地提取值和稀疏系数的位置在信息向量中。仿真结果表明,与标准的OMP算法性能相比,使用所提出的方法可以使信号与重构误差之比在SNR = 15dB时提高高达2 dB。

著录项

  • 作者

    Kirachaiwanich, Davis.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号