首页> 外文学位 >A Theoretical Analysis of Singularity-induced Micro-electroporation and its Applications.
【24h】

A Theoretical Analysis of Singularity-induced Micro-electroporation and its Applications.

机译:奇异性引起的微电穿孔的理论分析及其应用。

获取原文
获取原文并翻译 | 示例

摘要

Electroporation---the permeabilization of the cell membrane lipid bilayer due to a pulsed electric field---has important implications in the biotechnology, medicine, and food industries. Although the physical mechanism that causes electroporation is not entirely understood, it is believed that pulsed electric fields significantly increase the potential difference across the cell membrane, resulting in the formation of pores. Depending on the magnitude and duration of a pulsed electric field, membrane permeabilization is either reversible or irreversible. Reversible electroporation is commonly used to transfer macromolecules such as proteins, DNA, or drugs into cells, and the destructive nature of irreversible electroporation makes it suitable for cell ablation and sterilization.;Most electroporation devices have facing electrodes that generate uniform electric fields. Consequently, the magnitudes of these electric fields are inversely proportional to the distance between the electrodes. Since reversible and irreversible electroporation require electric field magnitudes on the order of 1 and 10 kV/cm, respectively, large potential differences are required to induce electroporation. Reducing the potential difference required to perform electroporation eliminates the need for a power supply, making electroporation cheaper and more accessible.;Singularity-induced micro-electroporation---an electroporation configuration composed of two adjacent electrodes separated by a nanoscale insulator---aims to reduce the potential difference required to perform electroporation. Application of a small potential difference between the electrodes creates a radially varying electric field emanating from the insulator. Secondary current distribution models of singularity-induced micro-electroporation show that applying a potential difference as low as 2.9 V creates an electric field that is capable of inducing reversible and irreversible electroporation. To date, the lowest potential difference used to perform irreversible electroporation is ∼20 V. More impressively, these models demonstrate that the ohmic drops in galvanic electrochemical cells can generate electroporation-inducing electric fields, enabling the creation of a self-powered micro-electroporation device.
机译:电穿孔-由脉冲电场引起的细胞膜脂质双层的渗透-在生物技术,医药和食品工业中具有重要意义。尽管尚未完全理解引起电穿孔的物理机制,但据信脉冲电场会大大增加整个细胞膜的电势差,从而导致孔的形成。取决于脉冲电场的大小和持续时间,膜通透性是可逆的或不可逆的。可逆电穿孔通常用于将大分子(例如蛋白质,DNA或药物)转移到细胞中,不可逆电穿孔的破坏性使其适用于细胞消融和灭菌。大多数电穿孔设备都具有面向电极,可产生均匀的电场。因此,这些电场的大小与电极之间的距离成反比。由于可逆和不可逆电穿孔分别需要大约1 kV / cm和10 kV / cm的电场强度,因此需要大的电势差来诱导电穿孔。减少执行电穿孔所需的电势差消除了对电源的需求,从而使电穿孔更便宜且更容易获得;奇异性诱导的微电穿孔-一种由两个相邻电极组成的电穿孔结构,两个相邻电极之间被纳米级绝缘体隔开-靶以减少进行电穿孔所需的电势差。在电极之间施加小的电势差会产生从绝缘体发出的径向变化的电场。奇异性引起的微电穿孔的次级电流分布模型表明,施加低至2.9 V的电势差会产生一个电场,该电场能够诱导可逆和不可逆的电穿孔。迄今为止,用于执行不可逆电穿孔的最低电势差约为20V。更令人印象深刻的是,这些模型表明,电化学电池中的欧姆滴可产生电穿孔感应电场,从而能够创建自供电的微电穿孔。设备。

著录项

  • 作者

    Troszak, Gregory David.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号