首页> 外文学位 >Molecular Imaging Approaches to Understanding the Roles of Copper in Biology.
【24h】

Molecular Imaging Approaches to Understanding the Roles of Copper in Biology.

机译:分子成像方法,以了解铜在生物学中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Cells exert precise control over their cellular copper pools through a sophisticated array of uptake, trafficking, and storage mechanisms that effectively maintain a low concentration of thermodynamically free copper ions while maintaining excellent kinetic lability of cellular copper stores. In higher eukaryotes and humans, and particularly in specialized cell types associated with brain, heart, intestine, and liver tissue, the molecular specifics of how kinetically labile copper pools are regulated at the subcellular level and the consequences of copper misregulation in aging and disease remain insufficiently understood. Biochemical and genetic studies have established a broad understanding of how cells acquire, maintain, redirect and release copper ions, while also identifying key proteins involved in these activities. The precise role of the copper ion, however, is more difficult to determine, owing mainly to a dearth of methods for directly following the fate of cellular copper stores. This dissertation describes the design, synthesis, and characterization a several new Cu(I)-responsive fluorophores. Through a targeted synthetic survey and comprehensive electrochemical study, the properties of our previously reported fluorophore, Coppersensor-1, were improved to yield a compound (Coppernsensor-3) that exhibits the largest fluorescent response to Cu(I) to date. Along with X-ray fluorescence microscopy, CS3 was used to investigate disruptions in copper homeostasis in a cell model for Menkes disease. The following report describes the synthesis, characterization and applications of Ratio-Coppersensor-1 (RCS1), the first ratiometric fluorophore for live-cell imaging. This compound was used to investigate the effect of ascorbate on rat brain and human kidney cells, and proved able to be able to detect increases in endogenous labile Cu(I) that occurs upon ascorbate treatment. A slight alteration to the ligand of RCS1 gave RCS2, which has similar spectroscopic properties to RCS1. Single-molecule X-ray crystallography and VT-NMR studies provide molecular dynamic details of RCS2 coordination to Cu(I).
机译:细胞通过一系列复杂的摄取,运输和存储机制对细胞铜池进行精确控制,这些机制可以有效维持低浓度的热力学自由的铜离子,同时保持细胞铜存储的出色的动力学稳定性。在高等真核生物和人类中,尤其是在与脑,心脏,肠和肝组织相关的特殊细胞类型中,如何在亚细胞水平上调节动力学不稳定的铜池的分子特性,以及铜在衰老和疾病中失调的后果仍然存在不够了解。生化和遗传研究对细胞如何获取,维持,重定向和释放铜离子建立了广泛的了解,同时还确定了参与这些活动的关键蛋白质。然而,主要由于缺乏直接追踪蜂窝状铜存储器命运的方法,因此更难确定铜离子的确切作用。本文描述了几种新型的Cu(I)响应性荧光团的设计,合成和表征。通过有针对性的合成调查和全面的电化学研究,我们先前报道的荧光团Coppersensor-1的性能得到了改善,以生产出迄今为止对Cu(I)表现出最大荧光响应的化合物(Coppernsensor-3)。与X射线荧光显微镜一起,CS3用于研究Menkes疾病细胞模型中铜稳态的破坏。以下报告描述了比率-铜传感器-1(RCS1)的合成,表征和应用,这是用于活细胞成像的第一个比率式荧光团。该化合物用于研究抗坏血酸对大鼠脑和人肾细胞的作用,并证明能够检测出抗坏血酸治疗后内源性不稳定Cu(I)的增加。 RCS1的配体略有改变,得到RCS2,其光谱特性与RCS1相似。单分子X射线晶体学和VT-NMR研究提供了RCS2与Cu(I)配位的分子动力学细节。

著录项

  • 作者

    Domaille, Dylan Wythe.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Cell.;Chemistry Inorganic.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号