首页> 外文学位 >Improved processing and development of the Multi-Filter Rotating Shadow-band Radiometer (MFRSR) network.
【24h】

Improved processing and development of the Multi-Filter Rotating Shadow-band Radiometer (MFRSR) network.

机译:改进了多滤波器旋转阴影带辐射计(MFRSR)网络的处理和开发。

获取原文
获取原文并翻译 | 示例

摘要

Information about global distributions of aerosol optical thickness (AOT) and size categorization is necessary to quantify the aerosol radiative forcing as well as a method to monitor air-quality such as fine particulate matter (PM). Efforts to provide such aerosol optical properties on a global scale clearly require satellite retrievals and therefore validation of satellite products is a clear priority. The development of suitable radiometer networks is central to this effort. Modern robotic solar instruments for retrievals of aerosols optical depth and other microphysical parameter retrievals, such as the CIMEL Sky Scanning Radiometer [Holben, 1998] as part of the Aeronet Network, are crucial to this effort but are unfortunately quite sparse and expensive and efforts to develop and utilize simpler portable instruments are highly desirable One attractive possibility is the deployment of Multi-Filter Rotating Shadow-band Radiometer (MFRSR) in a network [Alexandrov, 2002] both for validation efforts as well as monitoring extended megacities such as the NYC area.;Furthermore, the developments of these portable networks in urban areas are particularly crucial for the following reasons: (1) The retrieval of aerosol properties over land areas and particularly urban surfaces is far more challenging than over oceans due to the bright and complex surfaces in urban areas. Cutting Edge algorithms such as the aerosol retrieval from the Advanced Polari-metric Scanner (APS) [Waquet, 2009] from current and future platforms are in need for validation and clearly would benefit from instruments that can be moved to strategic locations under the satellite track. In addition, for climate studies, separation of aerosols into fine/coarse mode constituents [Mischenko, 2004] as well as identifying and quantifying absorbing aerosols is critical. These outputs are in fact a major focus of APS (or combined APS-MODIS) and pulling these parameters out from the MFRSR processing is critical in maximizing the value. (2) In addition, urban areas have more spatial diversity in aerosols and would greatly benefit from closely spaced measurements that can probe local structure and anomalies.;In this thesis, our goal is to test and implement a newly developed retrieval algorithm developed at NASA GISS [Alexandrov et al. 2006] for processing MFRSR data. In particular, we show that this algorithm significantly improves optical depth time series measurements in comparison to the most currently used Langley regression method calibration. We report our deployment of the MFRSR network over the NYC metropolitan area and describe intercomparison measurements between AOD measurements both inside and outside NYC in an effort to explore local aerosol production. Finally, the MFRSR network shall provide us with the spatial and temporal resolution needed to validate satellite data.;The thesis contents are as follows. In section 1, motivation of the importance of aerosols for both climate impacts and human health are briefly given as well as a primer on what optical quantities we are measuring to detect aerosols. In section 2, we briefly discuss the different ways to measure aerosols including satellite and ground remote sensing (and in-situ) instruments with a particular focus on establishing networks that can validate complex aerosol satellite algorithms. In section 3, we present our validation of the MFRSR algorithm of NASA GISS [Alexandrov et al. 2002, 2005, 2007, 2008] against CIMEL measurements to ensure that we are handling the processing stream properly. In section 4, we present our current and future network topology, processing, networking etc as well as present preliminary multisensory matchups for total AOD, fine and coarse mode separation and water vapor with particular focus on correlations and discrepancies. In section 5, we illustrate the value of the network through satellite validations for both MODIS and GOES aerosol retrievals. In section 6, we present our efforts to date in trying to pull out single scattering albedo and future prospects in moving the network deployment and algorithms forward. (Abstract shortened by UMI.)
机译:有关气溶胶光学厚度(AOT)的全球分布和大小分类的信息对于量化气溶胶辐射强迫以及监测空气质量(如细颗粒物(PM))的方法是必不可少的。在全球范围内提供此类气溶胶光学特性的努力显然需要卫星检索,因此,对卫星产品的确认是当务之急。合适的辐射计网络的开发对于这项工作至关重要。用于气溶胶光学深度的检索和其他微物理参数检索的现代机器人太阳能仪器,例如作为Aeronet网络一部分的CIMEL天空扫描辐射计[Holben,1998],对这项工作至关重要,但遗憾的是,这种方法非常稀少,昂贵且难以迫切需要开发和利用更简单的便携式仪器。一种有吸引力的可能性是在网络中部署多滤镜旋转阴影带辐射计(MFRSR)[Alexandrov,2002],既用于验证工作,又用于监视扩展的特大城市,例如纽约市地区。;此外,由于以下原因,这些便携式网络在城市地区的发展尤为关键:(1)由于表面明亮而复杂,陆地(尤其是城市表面)气溶胶特性的获取比海洋更具挑战性在城市地区。前沿算法,例如从当前和将来的平台从高级极化扫描仪(APS)[Waquet,2009年]进行气溶胶检索,都需要进行验证,并且显然将从可以移动到卫星轨道下关键位置的仪器中受益。另外,对于气候研究而言,将气溶胶分离成精细/粗模式成分[Mischenko,2004]以及识别和量化吸收气溶胶是至关重要的。这些输出实际上是APS(或组合的APS-MODIS)的主要关注点,将这些参数从MFRSR处理中拉出对于最大化该值至关重要。 (2)此外,城市地区气溶胶的空间多样性更大,可以从紧密探测的空间中探测局部结构和异常现象中受益匪浅。;本论文的目的是测试和实施由NASA开发的最新检索算法GISS [Alexandrov等。 2006]用于处理MFRSR数据。特别是,我们表明,与目前最常用的Langley回归方法校准相比,该算法可显着改善光学深度时间序列测量。我们报告了在纽约市大都会区域部署MFRSR网络的情况,并描述了纽约市内外的AOD测量之间的比对测量,以探索当地的气溶胶生产。最终,MFRSR网络将为我们提供验证卫星数据所需的时空分辨率。论文内容如下。在第1部分中,简要介绍了气雾剂对气候影响和人类健康的重要性,并简要介绍了我们正在测量的检测气溶胶的光学量。在第2节中,我们简要讨论了测量气溶胶的不同方法,包括卫星和地面遥感(和原位)仪器,特别着重于建立可以验证复杂气溶胶卫星算法的网络。在第3节中,我们介绍了对NASA GISS的MFRSR算法的验证[Alexandrov等。 [2002、2005、2007、2008],以确保我们能够正确处理处理流。在第4节中,我们介绍了当前和将来的网络拓扑结构,处理,网络等,并针对总AOD,精细和粗糙模式分离以及水蒸气提出了初步的多传感器匹配,尤其着重于相关性和差异。在第5节中,我们通过卫星验证说明了MODIS和GOES气溶胶回收的网络价值。在第6节中,我们介绍了迄今为止我们在努力推动单次散射反照率方面的努力以及推动网络部署和算法向前发展的未来前景。 (摘要由UMI缩短。)

著录项

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Engineering General.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号