首页> 外文学位 >Geometrical modeling of the heart.
【24h】

Geometrical modeling of the heart.

机译:心脏的几何建模。

获取原文
获取原文并翻译 | 示例

摘要

The heart is a very important human organ, that has a complex structure. Cardiovascular diseases have been the highest cause of death in North America and in Europe for decades. For this reason, a lot of research is made to understand the heart's physiology.;Such simulations on a complex geometry (the heart muscle or blood chambers) are usually made using the finite element or the finite volume methods. These methods requires a mesh of the computational domain, that is a triangulation of the domain into triangles in 2D or into tetrahedra in a 3D scenario. Thus far, most computations are made on meshes of idealized geometries and there is a lack of accurate 3D geometrical models of the heart. The community is aware of the importance of building accurate 3D models of the heart for understanding its physiology. There is only one realistic heart model that is publicly available.;The main achievement of this project is to have built a precise and complete geometrical model of the human heart. The model consists of 1. An accurate and properly refined mesh of the heart muscle and chambers. The model includes fine features such as the pulpillary muscles (pillars) in the left and right ventricles. 2. The orientation of cardiac fibers. 3. The model is publicly available to the scientific community1.;Other contributions of this thesis include a careful analysis, of known PDE-based segmentation methods. This is done in Chapter 5. We mostly studied the active contour without edges algorithm. We compared the impact of the choice of discretization on the numerical solutions of the problem. We concluded that some discretizations, while being more natural, do not behave as well as some others. We also evaluated the impact of the initial condition that is chosen on the speed of convergence of the algorithm. We carefully studied the hierarchical method of Gao and Bui [39], and show test cases where it performs better than the original multiphase algorithm of Vese and Chan [117]. We show that the hierarchical segmentation is a more natural framework for segmenting junctions of three segments.;One way to better understand the heart is via theoretical modeling of physiological mechanisms, the main ones being (1) trans-membrane potential wave propagation, (2) myocardium's contraction and (3) blood flow in the cardiac chambers. These physiological phenomena can be modeled via systems of partial differential equations (PDEs) that are defined on a domain given by the heart's shape. Numerical methods for solving these equations playa crucial role for validating these models. Numerical simulations also serve to make predictions of the organ's reaction to given stimuli. Thereby medical interventions such as the introduction of a pacemaker can be numerically simulated before attempting the surgical implantation.;We also proposed modifications of some PDE-based methods to be able to do the heart segmentation. In Chapter 5, we introduced two new types of initial conditions that make the active contour without edges algorithm converge more quickly. Also the hierarchical segmentation algorithm with an L 1 fidelity term is introduced and is shown to be more efficient in some contexts. In Chapter 7, we present a variant of the subjective surface problem introduced by Sarti, Malladi and Sethian [98, 99]. We propose to solve the problem on an annulus around the heart chambers.;During this project, we have developed C++ classes that handles 2D and 3D images. The result is a small PDE image processing toolkit (SPDEIPTK) that is suitable for research use. It features an almost transparent parallel implementation. The toolkit is also publicly available2.;1http://www.mathstat.uottawa.ca/∼orous272/;2http://www.mathstat.uottawa.ca/∼orous272/spdeiptk/index.html
机译:心脏是非常重要的人体器官,具有复杂的结构。几十年来,心血管疾病一直是北美和欧洲最高的死亡原因。出于这个原因,人们进行了大量的研究来了解心脏的生理学。通常使用有限元或有限体积方法对复杂的几何体(心肌或血腔)进行这种模拟。这些方法需要计算域的网格,即将域三角划分为2D的三角形或3D场景的四面体。迄今为止,大多数计算是在理想几何形状的网格上进行的,并且缺少精确的心脏3D几何模型。社区意识到建立准确的3D心脏模型以了解其生理学的重要性。公开的现实心脏模型只有一个。该项目的主要成果是建立了精确而完整的人类心脏几何模型。该模型由1个组成。准确和正确精炼的心肌和心室网格。该模型具有良好的功能,例如左右心室的乳头肌(毛细柱)。 2.心脏纤维的取向。 3.该模型可供科学界公开使用。;本文的其他贡献包括对已知的基于PDE的分割方法的仔细分析。这是在第5章中完成的。我们主要研究了无轮廓主动轮廓算法。我们比较了离散化选择对问题的数值解的影响。我们得出的结论是,某些离散化虽然更自然,但表现却不如其他离散化。我们还评估了初始条件对算法收敛速度的影响。我们仔细研究了Gao和Bui的分层方法[39],并显示了比原始的Vese和Chan的多阶段算法[117]更好的测试案例。我们表明,分层分割是用于分割三个节段的连接的更自然的框架。;一种更好地了解心脏的方法是通过生理机制的理论建模,主要是(1)跨膜电位波的传播,(2 )心肌的收缩和(3)心腔中的血流。可以通过偏微分方程(PDE)系统对这些生理现象进行建模,这些偏微分方程(PDE)在心脏形状给定的域上定义。求解这些方程的数值方法对于验证这些模型起着至关重要的作用。数值模拟还可以预测器官对给定刺激的反应。因此,在尝试进行外科手术植入之前,可以对诸如介入起搏器之类的医疗干预进行数值模拟。;我们还提出了对一些基于PDE的方法的修改,以便能够进行心脏分割。在第5章中,我们介绍了两种新的初始条件,它们使没有轮廓的活动轮廓算法收敛得更快。此外,引入了具有L 1保真度项的分层分段算法,该算法在某些情况下显示出更高的效率。在第7章中,我们介绍了Sarti,Malladi和Sethian [98,99]提出的主观表面问题的一种变体。我们建议在心脏腔周围的环上解决该问题。;在此项目中,我们开发了处理2D和3D图像的C ++类。结果是一个适合研究使用的小型PDE图像处理工具包(SPDEIPTK)。它具有几乎透明的并行实现。该工具包也可以公开获得2.; 1http://www.mathstat.uottawa.ca/~orous272/; 2http://www.mathstat.uottawa.ca/~orous272/spdeiptk/index.html

著录项

  • 作者

    Rousseau, Olivier.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Applied Mathematics.;Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号