首页> 外文学位 >Validation of three-dimensional radiative transfer in coastal-ocean water systems as modeled by DIRSIG.
【24h】

Validation of three-dimensional radiative transfer in coastal-ocean water systems as modeled by DIRSIG.

机译:通过DIRSIG建模验证了沿海海洋水系统中的三维辐射传递。

获取原文
获取原文并翻译 | 示例

摘要

The radiative transfer equation (RTE) is a mathematical description of radiative gains and losses experienced by a propagating electromagnetic wave in a participating medium. Except for an isotropic lossless vacuum, all other volumes have the potential to scatter, absorb and emit radiant energy. Of these possible events, the global scattering term is the greatest obstacle between a radiative transfer problem and its solution. Historically, the RTE has been solved using a host of analytical approximations and numerical methods. Typical solution models exploit plane-parallel assumptions where it is assumed that optical properties may vary vertically with depth, but have an infinite horizontal extent. For more complicated scenarios that include pronounced 3D variability, a Monte Carlo statistical approach to the radiative transfer solution is often utilized. This statistical approach has been integrated within the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model in the form of photon mapping. Photon mapping provides a probabilistic solution to the in-scattered radiance problem, by employing a two-pass technique that first populates a photon map based on a Monte Carlo solution to the global scattering term, and then later uses this map to reconstruct the in-scattered radiance distribution during a traditional raytracing pass. As with any computational solution, the actual implementation of the technique requires assumptions, simplifications and integration within a cohesive rendering model. Moreover, the realistic simulation of any environment requires several other radiometric solutions that are not directly related to the photon mapped in-scattered radiance. This research attempts to validate raytraced and photon mapped contributions to sensor reaching radiance that can be expected in typical littoral environments, including boundary interface, medium and submerged or floating object effects. This is accomplished by comparing DIRSIG modeled results to those predicted analytically, by comparison to other numerical models, and by comparison to observed field phenomenology. When appropriate, first-order estimates of a computational solution's ability to render a given phenomenon are provided, including any variance or bias that may result as a function of the user-specified solution configuration.
机译:辐射传递方程(RTE)是对参与介质中传播的电磁波所经历的辐射增益和损耗的数学描述。除了各向同性的无损真空外,所有其他体积都有散射,吸收和发射辐射能的潜力。在这些可能的事件中,全局散射项是辐射传递问题及其解决方案之间的最大障碍。从历史上看,RTE已使用许多解析近似和数值方法来求解。典型的解决方案模型采用平面平行假设,其中假设光学属性可能随深度垂直变化,但水平范围无限大。对于包括明显的3D可变性在内的更复杂的场景,通常采用蒙特卡洛统计方法求解辐射传递解。这种统计方法已经以光子映射的形式集成在数字成像和遥感图像生成(DIRSIG)模型中。通过采用两次通过技术,光子贴图为散射内辐射问题提供了一种概率解决方案,该技术首先基于基于蒙特卡洛解决方案的光子图填充全局散射项,然后再使用该图来重构散射内辐射度问题。传统射线追踪过程中的散射辐射分布。与任何计算解决方案一样,该技术的实际实现需要在内聚渲染模型中进行假设,简化和集成。此外,任何环境的真实模拟都需要其他几种辐射解决方案,这些解决方案与光子映射的散射内辐射度没有直接关系。这项研究试图验证光线追踪和光子映射对传感器达到辐射的贡献,这在典型的沿海环境中是可以预期的,包括边界界面,中等和水下或漂浮物体效应。这是通过将DIRSIG建模结果与分析预测的结果进行比较,与其他数值模型进行比较以及与观察到的现场现象进行比较来实现的。在适当时,提供对计算解决方案呈现给定现象的能力的一阶估计,包括可能会根据用户指定的解决方案配置而导致的任何方差或偏差。

著录项

  • 作者

    Speir, Jacqueline Amy.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Remote Sensing.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 327 p.
  • 总页数 327
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号