首页> 外文学位 >Structure and relaxation of polymers, polymer-based nanocomposites, and biopolymers.
【24h】

Structure and relaxation of polymers, polymer-based nanocomposites, and biopolymers.

机译:聚合物,基于聚合物的纳米复合材料和生物聚合物的结构和松弛。

获取原文
获取原文并翻译 | 示例

摘要

Polymer nanocomposites have generated significant attention in both the academic and the industrial areas of materials science and engineering. They provide both interesting and improved physical properties compared to the conventional polymers. Polymer nanocomposites are simply the mixture of the conventional polymer matrix and several kinds of nanofillers, including nanoclay, carbon nanotube and nanoparticles. The most common reason for adding nanofillers, such as nanoclay and carbon nanotubes, into a conventional polymer matrix is the mechanical reinforcement. The enhancement of the stiffness and elasticity and the reduction of the coefficient of thermal expansion (CTE) of the polymer matrix are the direct results of the addition of nanofillers. Other than the mechanical reinforcement, the polymer nanocomposites show some other improvements compared to the conventional polymer matrix. Properly aligned nanoclay can reduce the gas permeability to a great extent and improve the barrier properties, which has potential application in the industrial packaging field. Finally, polymer nanocomposites have applications in biomedical engineering and fuel cell technology. The incorporation of nanoclay can introduce some "nano-effect" into the polymer matrix. The crystallization kinetics and the glass transition temperature Tg can be altered due to the interaction between nanoclay and the matrix polymer chains.In this thesis, several topics and issues are presented and discussed to show various effects of nanoclay on the crystal structure, physical properties and the crystallization process of the polymer matrix. In Chapter IV, the change of crystal phase of electrospun poly(vinylidene fluoride) (PVDF) nanofibers with the addition of nanoclay is investigated. Neat electrospun PVDF nanofibers contain non-polar alpha phase and polar beta phase crystals and the nanoclay induces more polar beta phase. An ion-dipole interaction between the negatively charged nanoclay platelet and the partially positive CH2 group in PVDF is utilized to explain this phenomenon and the existence of this interaction is proved by Fourier transform infrared spectroscopy.The effect of nanoclay on the relaxation behavior of PVDF nanocomposite film was investigated in Chapter V using dielectric relaxation spectroscopy (DRS) and wide and small angle X-ray scattering. The addition of this nanoclay to PVDF also results in preferential formation of the polar beta-crystallographic phase. The relaxation rates for processes termed alphaa (glass transition, related to polymer chain motions in the amorphous regions) increases with the concentration of nanoclay because of the reduction of intermolecular correlations between the polymer chains. These are caused by the presence of nanoclay silicate layers, which segregate polymer chains in the amorphous regions. The alphac relaxation rate (related to polymer chain motions in the crystalline regions and fold surfaces) increases with concentration of nanoclay in all nanocomposite samples. The DC conductivity is compared between neat PVDF and nanocomposites samples and 10 wt% nanoclay increases the DC conductivity by almost four decades compared with neat PVDF.X-ray scattering and dielectric relaxation spectroscopy (DRS) were used in Chapter VI to investigate the effects of nanoclay on the structure and relaxation dynamics of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)]/Nanoclay nanocomposites. The electrical properties of the neat P(VDF-TrFE) and nanocomposites with nanoclay were studied during the crystallization process which includes the melt-to-paraelectric and paraelectric-to-ferroelectric transitions. In Chapter VII, silk fibroin protein was studied with dielectric relaxation spectroscopy (DRS). Two emerging dielectric relaxations were observed in silk fibroin protein with bound water compared to that without bound water. Isothermal crystallization of silk fibroin protein is investigated by real-time DRS methods and the silk fibroin protein shows a different crystallization mechanism compared to conventional thermoplastic polymers.Finally, .m files for two MATLAB programs, "Real Time Dielectric Application" and "DFit", which are used for dielectric relaxation spectroscopy (DRS) data gathering and analysis, are shown in the Appendix.
机译:聚合物纳米复合材料在材料科学和工程学的学术和工业领域都引起了极大的关注。与常规聚合物相比,它们提供有趣且改进的物理性能。聚合物纳米复合材料只是常规聚合物基质和几种纳米填料的混合物,包括纳米粘土,碳纳米管和纳米颗粒。向常规聚合物基质中添加纳米填料(例如纳米粘土和碳纳米管)的最常见原因是机械增强。聚合物基质的刚度和弹性的增强以及热膨胀系数(CTE)的降低是添加纳米填料的直接结果。除机械增强外,与常规聚合物基体相比,聚合物纳米复合材料还显示出其他一些改进。正确排列的纳米粘土可在很大程度上降低气体的渗透性并改善阻隔性能,在工业包装领域具有潜在的应用前景。最后,聚合物纳米复合材料已在生物医学工程和燃料电池技术中得到应用。纳米粘土的掺入可将一些“纳米效应”引入聚合物基质中。由于纳米粘土与基体聚合物链之间的相互作用,可以改变结晶动力学和玻璃化转变温度Tg。本文提出并讨论了几个主题和问题,以显示纳米粘土对晶体结构,物理性质和力学性能的各种影响。聚合物基质的结晶过程。在第四章中,研究了添加纳米粘土的电纺聚偏二氟乙烯(PVDF)纳米纤维的晶相变化。整洁的电纺PVDF纳米纤维包含非极性的α相和极性的β相晶体,并且纳米粘土会诱导更多的极性β相。利用负电荷的纳米粘土血小板与部分正电荷的CH2基团之间的离子偶极相互作用来解释这种现象,并通过傅立叶变换红外光谱法证明了这种相互作用的存在。纳米粘土对PVDF纳米复合材料的弛豫行为的影响在第五章中,使用介电弛豫光谱(DRS)以及宽和小角度X射线散射对薄膜进行了研究。将该纳米粘土添加到PVDF中还导致极性β-结晶相的优先形成。由于聚合物链之间分子间相关性的降低,称为αα(玻璃化转变,与无定形区域中的聚合物链运动有关)的过程的弛豫速率随纳米粘土的浓度而增加。这些是由于纳米粘土硅酸盐层的存在而造成的,该层将聚合物链隔离在非晶区域中。 alphac弛豫速率(与晶体区域和折叠表面中的聚合物链运动有关)随所有纳米复合材料样品中纳米粘土浓度的增加而增加。比较了纯净PVDF和纳米复合材料样品的直流电导率,与纯净PVDF相比,10 wt%的纳米粘土将直流电导率提高了近四十倍。第六章使用X射线散射和介电弛豫谱(DRS)来研究纳米粘土对聚偏二氟乙烯-三氟乙烯共聚物[P(VDF-TrFE)] /纳米粘土纳米复合材料的结构和弛豫动力学的影响。在结晶过程中研究了纯P(VDF-TrFE)和具有纳米粘土的纳米复合材料的电学性质,该过程包括熔融至顺电和顺电至铁电的转变。在第七章中,用介电弛豫谱法(DRS)研究了丝素蛋白的存在。与没有结合水的丝素蛋白相比,在有结合水的丝素蛋白中观察到两种新出现的介电弛豫。通过实时DRS方法研究了丝素蛋白的等温结晶,并且与常规热塑性聚合物相比,丝素蛋白显示出不同的结晶机理。最后,两个MATLAB程序“实时介电应用”和“ DFit”的.m文件附录中显示了用于介电弛豫光谱(DRS)数据收集和分析的。

著录项

  • 作者

    Yu, Lei.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Physics Condensed Matter.Nanotechnology.Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 359 p.
  • 总页数 359
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号