首页> 外文学位 >Improved analysis of brain connectivity using high angular resolution diffusion MRI.
【24h】

Improved analysis of brain connectivity using high angular resolution diffusion MRI.

机译:使用高角度分辨率扩散MRI改进的大脑连通性分析。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation deals with the use of constrained spherical deconvolution (CSD) of diffusion weighted (DW) MRI data for the purpose of improved fiber tractography. The manuscript is divided into two large parts. Part I , provides the necessary background material on diffusion MRI, multi-fiber reconstruction algorithms and fiber tractography. Part II provides an overview of the main contributions of this thesis.;Diffusion-weighted (DW) MRI is a magnetic resonance imaging (MRI) technique that indirectly measures the local mobility of water molecules. It is unique in its ability to measure diffusion non-invasively, making it the method of choice for in vivo diffusion measurements. A key feature of diffusion MRI is that it can provide information about the geometry of the underlying tissue microstructure, at scales much smaller than the imaging resolution. In fibrous tissue, such as in the brain white matter (WM), water molecules tend to diffuse more along the fibers, enabling researchers to obtain information about the orientation and 'integrity' of the underlying tissue. Currently, diffusion tensor imaging (DTI) is the most widely used method for assessing WM orientation and integrity, owing to its modest acquisition requirements. The ability to assess WM orientation and integrity from a single in vivo scan raises huge possibilities for neuroscientific research and there has been a rapid increase in clinical studies using DTI in the last decade. For a detailed review of the principles of diffusion, diffusion MRI and DTI the reader is referred to Chapter 1.;Despite its popularity, DTI has an important limitation in that it can only model a single fiber population per voxel. However, due to partial volume effects between adjacent WM fiber bundles, many voxels contain contributions from several differently oriented fiber populations. In such voxels, DTI orientation and DTI integrity metrics are unreliable. Recently, a number of methods have been proposed that are able to extract multiple fiber orientations from the DW signal, overcoming the limitation of DTI. One particularly promising method is constrained spherical deconvolution (CSD), which recovers the full fiber orientation distribution function (fODF) within each voxel directly from the diffusion data using the concept of spherical deconvolution. By applying a non-negativity constraint on the fODF, CSD allows robust multiple fiber orientation estimation using relatively modest acquisition settings. An in-depth review of the different multi-fiber reconstruction algorithms, CSD in particular, is provided in Chapter 2.;Fiber tractography pieces together the local WM orientations derived with DTI or more advanced multiple fiber reconstruction algorithms in order to infer long-range connectivity patterns between distant brain regions. Diffusion MRI based fiber tractography is unique in its ability to delineate the WM fiber pathways in a non-invasive way, raising possibilities for clinical applications and providing new insights in how the brain is wired up. Fiber tractography algorithms can be classified largely into deterministic and probabilistic algorithms. Deterministic tractography algorithms reconstruct the most likely trajectory emanating from a given point, whereas probabilistic algorithms produce a distribution of trajectories, reflecting the degree of uncertainty of the trajectories. The concepts, limitations, and applications of fiber tractography are introduced in Chapter 3.;Contributions.;As DTI based fiber tractography becomes unreliable in regions of complex fiber configurations, we developed a new deterministic tractography algorithm based on CSD. As CSD is capable of resolving multiple fiber orientations within each voxel, it is expected to improve tractography results in regions of complex fiber architecture. By means of a simple crossing fiber phantom, we showed that the algorithm is able to track through regions containing crossing fibers where DTI tractography fails. In addition, our method was evaluated quantitatively on a more complex fiber phantom, as part of the MICCAI 2009 fiber cup contest. Analysis of the results revealed our solution was characterized by the lowest average error for both the spatial and directional metric and our method was the only one tracing the correct fiber bundles from start to end. In Chapter 4, our algorithm, as well as the quantitative and qualitative evaluation using different MR phantoms is explained in detail. In addition we briefly discuss some applications of the proposed CSD tractography method.;While CSD offers an improved estimate of the fiber orientations in the presence of partial volume effects, diffusion MRS is inherently a noisy technique, resulting in uncertainty associated with each fiber orientation estimate. In Chapter 5, we introduce the use of bootstrapping techniques to quantify the uncertainty of CSD estimated fiber orientations. The performance of bootstrapping was measured in terms of accuracy and precision using Monte Carlo simulations. We looked at both the 'classic repetition bootstrap' approach which estimates the fiber orientation uncertainty by randomly selecting individual measurements from a set of repeated measurements, and the 'residual bootstrap' approach, which estimates the fiber orientation by randomly selecting model residuals, requiring only a single measurement and thus being more clinically feasible. Our simulations showed that the 'classic repetition bootstrap' significantly underestimates the uncertainty when only a few repeated acquisitions are available, which is typically the case. We showed that this large downward bias can be removed by using the bootknife approach, allowing accurate CSD fiber orientation uncertainty estimates with only a limited set of repeated measurements and without making assumptions about the sources of uncertainty in the data. However, in a clinical setting, even a few repeated measurements can render acquisition time unacceptably long. For this reason we also investigated the residual bootstrap, which performs the bootstrapping procedure on the residuals of a model fit, requiring only a single acquisition. Our simulations showed that the combination of the residual bootstrap with the modified spherical harmonics model allows accurate estimates of the CSD fiber orientation uncertainty, bringing it into the clinical realm.;In Chapter 6, we build on the findings of Chapters 4 & 5 to formulate a new probabilistic tractography algorithm based on CSD and the residual bootstrap, overcoming the limitations of DTI tractography and at the same time providing uncertainty measures of the fiber trajectories, using only a single acquisition. Using Monte Carlo simulations, we measured the accuracy and precision of the residual bootstrap method when estimating CSD fiber pathway uncertainty. We also applied our algorithm to clinical DW data and compared our method to state-of-the-art DTI residual bootstrap tractography and to an established probabilistic multi-fiber CSD tractography algorithm which draws samples directly from the fODF. CSD residual bootstrap probabilistic tractography showed advantageous over DTI residual bootstrap probabilistic tractography: in regions of multiple fiber orientations, CSD was much less prone to fiber dispersion, false positives, and false negatives. We also showed the advantages of our method over CSD fODF sampling tractography: in regions of well ordered and sharp peak orientations, our method does not suffer from unrealistically high dispersion and our method has a higher specificity in general.;In Chapter 7, we set out to assess the prevalence of voxels containing multiple fiber orientations, as these are the voxels where multi-fiber reconstruction algorithms would result in improved tractography results. For this purpose, we acquired large, high quality DW data sets and extracted the fiber orientations using both CSD and the bedpostx algorithm. Our results indicated that multiple fiber orientations can be found in a much higher percentage of WM voxels than previously reported, with CSD providing much higher estimates than bedpostx. These findings have obvious and profound implications for both tractography and integrity analyses, and strengthen the growing awareness that fiber tractography and 'WM integrity' metrics derived from DTI need to be interpreted with extreme caution, underlining the importance of the methods developed in the previous chapters.
机译:为了改善纤维束成像,本文研究了弥散加权(DW)MRI数据的约束球面反褶积(CSD)的使用。手稿分为两大部分。第一部分提供了有关扩散MRI,多纤维重建算法和纤维束摄影术的必要背景资料。第二部分概述了本论文的主要贡献。弥散加权(DW)MRI是一种磁共振成像(MRI)技术,可间接测量水分子的局部迁移率。它以非侵入性方式测量扩散的能力是独特的,使其成为体内扩散测量的首选方法。弥散MRI的一个关键特征是,它可以以比成像分辨率小得多的比例提供有关底层组织微结构的几何信息。在纤维组织中,例如在脑白质(WM)中,水分子倾向于沿纤维更多地扩散,从而使研究人员能够获取有关基础组织的方向和“完整性”的信息。当前,由于其适度的采集要求,扩散张量成像(DTI)是评估WM方向和完整性的最广泛使用的方法。通过一次体内扫描评估WM方向和完整性的能力为神经科学研究提供了巨大的可能性,并且在过去十年中,使用DTI进行临床研究的数量迅速增加。有关扩散,扩散MRI和DTI原理的详细说明,请参阅第1章。尽管DTI颇受欢迎,但它的一个重要局限性在于每个体素只能模拟单个纤维种群。但是,由于相邻WM纤维束之间的局部体积效应,许多体素包含来自几种不同取向的纤维群的贡献。在此类体素中,DTI方向和DTI完整性指标不可靠。最近,已经提出了许多方法,这些方法能够从DW信号中提取多个光纤方向,从而克服了DTI的局限性。一种特别有前途的方法是约束球形反褶积(CSD),它使用球形反褶积的概念直接从扩散数据中恢复每个体素内的完整纤维取向分布函数(fODF)。通过在fODF上施加非负约束,CSD可以使用相对适中的采集设置来进行可靠的多纤维取向估计。第2章深入探讨了不同的多纤维重建算法,尤其是CSD;纤维束成像将DTI或更高级的多纤维重建算法推导出的局部WM方向拼凑在一起,以推断远距离远距大脑区域之间的连通性模式。基于扩散MRI的纤维束描记术以非侵入性方式描绘WM纤维通路的能力非常独特,这为临床应用提供了可能性,并为大脑如何连接提供了新的见解。纤维束摄影算法可以大致分为确定性算法和概率性算法。确定性的人像学算法重建从给定点发出的最可能的轨迹,而概率算法产生轨迹的分布,反映轨迹的不确定性程度。在第3章中介绍了纤维束描记术的概念,局限性和应用。由于贡献,随着基于DTI的纤维束描记术在复杂的纤维配置区域变得不可靠,我们开发了一种基于CSD的确定性束缚术算法。由于CSD能够解析每个体素内的多个纤维方向,因此有望改善复杂纤维结构区域中的束线照相术结果。通过一个简单的交叉纤维幻影,我们证明了该算法能够跟踪包含DTI束摄影失败的交叉纤维的区域。此外,作为MICCAI 2009纤维杯比赛的一部分,我们的方法在更复杂的纤维模型上进行了定量评估。结果分析表明,我们的解决方案的特征是空间和方向度量的平均误差最低,而我们的方法是唯一从头到尾追踪正确纤维束的方法。在第4章中,将详细说明我们的算法,以及使用不同MR体模的定量和定性评估。此外,我们简要地讨论了所建议的CSD显像术方法的一些应用。虽然CSD在存在部分体积效应的情况下提供了对纤维取向的改进估计,但是扩散MRS本质上是一种嘈杂的技术,导致与每个纤维取向估计相关的不确定性。在第5章,我们介绍了使用自举技术来量化CSD估计光纤方向的不确定性。使用蒙特卡洛(Monte Carlo)模拟对自举性能进行了准确性和精确度的测量。我们研究了“经典重复引导”方法和“残余引导”方法,“经典重复引导”方法通过从一组重复测量中随机选择单个测量值来估计纤维方向的不确定性,而“残余引导”方法通过随机选择模型残差来估计纤维的方向,仅一次测量,因此在临床上更可行。我们的模拟表明,“经典重复引导”大大低估了只有少数重复采集(通常是这种情况)时的不确定性。我们表明,可以通过使用弯刀方法消除这种较大的向下偏差,从而仅通过有限的一组重复测量即可进行准确的CSD光纤取向不确定度估算,而无需对数据的不确定性来源进行假设。但是,在临床环境中,即使几次重复测量也会使采集时间过长。因此,我们还研究了残差自举程序,该程序对模型拟合的残差执行自举程序,仅需一次采集即可。我们的仿真表明,残余自举与改进的球谐模型相结合,可以准确估计CSD纤维取向的不确定性,并将其带入临床领域。在第6章中,我们基于第4和第5章的发现来制定一种基于CSD和剩余自举的新概率概率束摄影算法,克服了DTI束摄影技术的局限性,同时仅使用一次采集即可提供纤维轨迹的不确定性度量。使用蒙特卡洛模拟,我们在估计CSD光纤路径不确定性时测量了残留自举方法的准确性和精度。我们还将我们的算法应用于临床DW数据,并将我们的方法与最新的DTI残留自举束描记术和已建立的概率多纤维CSD描记术算法进行比较,该算法直接从fODF中提取样本。 CSD残留自举概率谱显示优于DTI残留自举概率谱:在多个纤维方向的区域中,CSD不太容易出现纤维分散,假阳性和假阴性。我们还展示了该方法相对于CSD fODF采样管束成像的优势:在井井有序且峰指向清晰的区域,我们的方法不会遭受不切实际的高分散性,并且我们的方法通常具有更高的特异性。;在第7章中,我们进行了设置评估包含多个纤维方向的体素的患病率,因为这些是多纤维重建算法可改善束线照相结果的体素。为此,我们获取了大量高质量的DW数据集,并使用CSD和bedpostx算法提取了光纤的方向。我们的结果表明,在WM体素中,比以前报告的多,可以发现多种纤维方向,而CSD提供的估计值比bedpostx高得多。这些发现对束层学和完整性分析均具有明显而深远的意义,并增强了人们的认识,即必须格外谨慎地解释源自DTI的纤维束层学和“ WM完整性”指标,强调了前几章开发的方法的重要性。 。

著录项

  • 作者

    Jeurissen, Ben.;

  • 作者单位

    Universiteit Antwerpen (Belgium).;

  • 授予单位 Universiteit Antwerpen (Belgium).;
  • 学科 Engineering Biomedical.;Biology Neuroscience.;Health Sciences Radiology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号