首页> 外文学位 >Development of numerical optimization techniques for optimal design of nanophotonic and nanoplasmonic systems.
【24h】

Development of numerical optimization techniques for optimal design of nanophotonic and nanoplasmonic systems.

机译:数值优化技术的发展,用于纳米光子和纳米等离子体系统的优化设计。

获取原文
获取原文并翻译 | 示例

摘要

There is a steadily growing interest in building new photonic and plasmonic nanosystems capable of tailoring the electromagnetic properties of light. An optimal design of these nanosystems is critical for their efficiency. One essential component of optimal design of nanodevices is numerical simulation and optimization that provide the optimal structure to be tested experimentally, and eventually implemented as actual device. This dissertation focuses on the development of numerical optimization techniques to analyze and design efficient nanoplasmonic and nanophotonic systems. In this work the electromagnetic field is modeled through the numerical solution of Maxwell's equations in the frequency domain, and numerical techniques that address optimization problems with these PDE constraints are developed. Application of the techniques to problems of i) maximization of light absorption by metal nanoparticle and ii) efficient surface plasmon generation demonstrate considerable practical value of the developed methodology.;No preferred strategy has yet emerged from the nanophotonic research community to solve optimization problems with partial differential equation constraints, despite continuous the theoretical developments in topology and shape optimization, large-scale nonlinear optimization and sensitivity analysis. This dissertation considers two approaches to the problem.;The first approach is to discretize and incorporate the PDE into a constrained optimization problem to solve with an appropriate nonlinear programming algorithm. The second optimization approach is to formulate and compute the gradient and modify the parameters accordingly, using the current data and PDE solution obtained from the solver. The first approach has been implemented in AMPL modeling language for problem i). The second numerical optimization approach is the main strategy implemented for both problems i) and ii) using COMSOL Multiphysics and MATLAB.;Although this effort to solve a design optimization problem is specific to nanophotonic/nanoplasmonic systems, the result of this work afford computational tools with broader applications to advance the wider problem of optimization with PDE constraints.
机译:建立能够调整光的电磁特性的新型光子和等离子体纳米系统的兴趣在不断增长。这些纳米系统的最佳设计对其效率至关重要。纳米器件最佳设计的一个重要组成部分是数值模拟和优化,它提供了要进行实验测试的最佳结构,并最终实现为实际器件。本文致力于数值优化技术的发展,以分析和设计有效的纳米等离子体和纳米光子系统。在这项工作中,通过在频域中通过麦克斯韦方程组的数值解对电磁场进行建模,并开发了解决具有这些PDE约束的优化问题的数值技术。该技术在以下方面的应用:i)金属纳米粒子最大程度地吸收光; ii)有效产生表面等离激元,证明了所开发方法的实用价值。;纳米光子研究界尚未出现解决部分优化问题的首选策略。尽管在拓扑和形状优化,大规模非线性优化和灵敏度分析方面的理论发展不断,但微分方程约束仍然存在。本文考虑了两种方法来解决该问题。第一种方法是将PDE离散化并将其纳入约束优化问题中,以采用适当的非线性规划算法进行求解。第二种优化方法是使用从求解器获得的当前数据和PDE解来公式化和计算梯度并相应地修改参数。第一种方法已经以AMPL建模语言解决了问题i)。第二种数值优化方法是使用COMSOL Multiphysics和MATLAB对问题i)和问题ii)实施的主要策略;尽管解决设计优化问题的工作仅针对纳米光子/纳米等离子体系统,但这项工作的结果提供了计算工具具有更广泛的应用程序,以解决具有PDE约束的最优化问题。

著录项

  • 作者

    Caiseda, Carmen A.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Applied Mathematics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号