首页> 外文学位 >Pharmaceutical cocrystals and amorphous spray-dried dispersions of tenoxicam: Solubility and dissolution enhancement approaches.
【24h】

Pharmaceutical cocrystals and amorphous spray-dried dispersions of tenoxicam: Solubility and dissolution enhancement approaches.

机译:替诺昔康的药物共晶体和无定形喷雾干燥分散体:溶解度和溶解度提高方法。

获取原文
获取原文并翻译 | 示例

摘要

In the present work, crystal engineering and spray drying approaches are applied to tenoxicam Form III, a sparingly soluble active pharmaceutical ingredient (API) (<0.1 ug/ml aqueous solubility) within the oxicam class of non-steroidal anti-inflammatory drugs (NSAID). The primary objectives of the study were to investigate the feasibility of applying crystal engineering and spray drying techniques to identify and characterize cocrystals, and generate a stabilized amorphous dispersions of tenoxicam respectively; and determine whether or not the identified cocrystals or generated amorphous dispersions have impact, if any, on the solubility and/or dissolution and stability of a sparingly soluble model drug, tenoxicam.;An attempt was made to summarize the relevant widespread current literature to understanding the design strategy of cocrystals, preparation techniques and their limitations, cocrystal formation pathways, crystal engineering strategies evaluation and the potential impact of these strategies on the physicochemical properties of an API in question. Recent advances made in the crystal engineering strategies and the innumerable possibilities for designing cocrystals of pharmaceutical and clinical relevance have been exemplified by several cocrystal case studies.;Tenoxicam is a molecule that contains a number of groups capable of hydrogen bonding including amide, pyridyl, phenolic hydroxyl, sulfone, and thiophene functional groups. Therefore, the evaluation of cocrystal design strategy in this study included various carboxylic acids as cocrystal formers representing a wide range of hydrogen bond donors and acceptors. Cocrystals of tenoxicam, were screened, prepared, and characterized using various techniques. Nine phase pure cocrystals of tenoxicam were identified using solvent-drop grinding (SDG) techniques. Structural characterization was performed using powder X-ray diffraction (PXRD), differential scanning calorimetry, and multinuclear solid-state NMR (SSNMR). Solvates and phase mixtures encountered in SDG cocrystal screening were detected using Thermal analysis, PXRD, and 1D SSNMR techniques. Cocrystals formation was confirmed and the structural aspects for the selected cocrystals formed with saccharin, salicylic acid, succinic acid, and glycolic acid are determined using 2D SSNMR methods. Molecular association was demonstrated using cross-polarization heteronuclear dipolar correlation (CP-HETCOR) methods involving 1H and 13C nuclei. The local aspects of the cocrystal structure were revealed by Short-range 1H- 13C CP-HETCOR and 1H-1H double-quantum interactions between atoms of interest, including those engaged in hydrogen bonding. The ionization state and the potential for zwitterionization in the selected cocrystals were assessed by 15N SSNMR. The tenoxicam saccharin cocrystal was found to be similar in structure to a previously-reported cocrystal of piroxicam and saccharin. Comparative evaluation studies on dissolution for four selected cocrystals yielded intrinsic dissolution rates similar or reduced relative to tenoxicam Form III.;Amorphous spray dried dispersions were prepared using L-arginine as a solubilizer. The physical properties of these dispersions were improved by adding Polyvinylpyrrolidone (PVP) as a stabilizer. Results of the study indicated that dispersions containing a 1:2 ratio of tenoxicam:L-arginine with 10% to 50% w/w PVP provided a twofold increase over equilibrium solubility of Tenoxicam at the same pH. Accelerated stability studies performed at accelerated conditions for one month demonstrated that the dispersions exhibit acceptable physical properties with only a minor decrease in chemical stability. In conclusion, for amorphous SDD study, SDDs prepared with tenoxicam, L-arginine and PVP exhibited greatly enhanced dissolution, acceptable physical properties, and sufficient stability for development. SSNMR methods are useful in elucidating structural properties, molecular association, and the formation of a glass solution between tenoxicam, L-arginine and PVP. (Abstract shortened by UMI.).
机译:在目前的工作中,晶体工程和喷雾干燥方法应用于替诺昔康晶型III,这是非甾体抗炎药(NSAID)的奥昔康类中的微溶性活性药物成分(API)(<0.1 ug / ml水溶性) )。该研究的主要目的是研究应用晶体工程和喷雾干燥技术鉴定和表征共晶体并分别生成替诺昔康稳定的非晶态分散体的可行性。并确定所鉴定的共晶体或生成的无定形分散体是否对微溶模型药物替诺昔康的溶解度和/或溶解度和稳定性产生影响(如果有的话)。共晶的设计策略,制备技术及其局限性,共晶形成途径,晶体工程策略评估以及这些策略对相关API的理化性质的潜在影响。几个共晶案例研究证明了晶体工程策略的最新进展以及设计药物共晶和临床相关性的无数可能性。替诺昔康是一种分子,它包含许多能够进行氢键键合的基团,包括酰胺,吡啶基,酚基羟基,砜和噻吩官能团。因此,在这项研究中对共晶设计策略的评估包括各种羧酸作为共晶形成剂,它们代表了广泛的氢键供体和受体。使用各种技术筛选,制备和表征替诺昔康共晶体。使用溶剂滴磨(SDG)技术鉴定了Tenoxicam的九相纯共晶体。使用粉末X射线衍射(PXRD),差示扫描量热法和多核固态NMR(SSNMR)进行结构表征。使用热分析,PXRD和1D SSNMR技术检测在SDG共晶筛选中遇到的溶剂化物和相混合物。确认了共晶体的形成,并使用2D SSNMR方法确定了与糖精,水杨酸,琥珀酸和乙醇酸形成的所选共晶体的结构方面。使用涉及1H和13C核的交叉极化异核偶极相关(CP-HETCOR)方法证明了分子缔合。共晶体结构的局部方面通过目标原子之间的短程1H-13C CP-HETCOR和1H-1H双量子相互作用揭示,包括参与氢键的原子。通过15N SSNMR评估所选共晶体中的电离状态和两性离子化的潜力。发现替诺昔康糖精共晶体的结构与先前报道的吡罗昔康和糖精共晶体的结构相似。四种选择的共晶的溶出度的比较评估研究得出的固有溶出率与替诺昔康晶型III相似或降低。通过添加聚乙烯吡咯烷酮(PVP)作为稳定剂可以改善这些分散体的物理性能。研究结果表明,在相同pH值下,含有Tenoxicam:L-精氨酸的1:2比例和10%至5​​0%w / w PVP的分散体比Tenoxicam的平衡溶解度增加了两倍。在加速条件下进行了一个月的加速稳定性研究表明,分散体表现出可接受的物理性能,而化学稳定性仅稍有下降。总之,对于无定形SDD研究,用Tenoxicam,L-精氨酸和PVP制备的SDD表现出极大的溶解性,可接受的物理性能以及足够的显影稳定性。 SSNMR方法可用于阐明结构特性,分子缔合以及替诺昔康,L-精氨酸和PVP之间的玻璃溶液的形成。 (摘要由UMI缩短。)。

著录项

  • 作者

    Patel, Jagdishwar R.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号