首页> 外文学位 >Characterization of Nucleotide Pyrophosphatase/Phosphodiesterase 4, a Dinucleotide Hydrolase, and Its Promotion of Platelet Aggregation.
【24h】

Characterization of Nucleotide Pyrophosphatase/Phosphodiesterase 4, a Dinucleotide Hydrolase, and Its Promotion of Platelet Aggregation.

机译:核苷酸焦磷酸酶/磷酸二酯酶4(一种二核苷酸水解酶)的特性及其对血小板聚集的促进作用。

获取原文
获取原文并翻译 | 示例

摘要

Nucleotide pyrophosphatases/phosphodiesterases (NPPs) are a family of enzymes found in eukaryotes and bacteria that hydrolyze nucleotide or lipid phosphodiesters. In eukaryotes, they are expressed as secreted or membrane-bound proteins and are known to regulate a diverse range of physiological processes, including cardiovascular function, tumor development, and biomineralization. Despite their predicted structural similarity, NPP substrate specificity varies greatly: NPP1 and NPP3 are nucleotide hydrolases, and NPP2, NPP6, and NPP7 are phospholipid hydrolases, while NPP4 and NPP5 are uncharacterized. Two structures of NPPs have been solved: one from the bacterium Xanthomonas axonopodis pv. citri, and the mouse and rat isoforms of NPP2.;We developed a baculovirus expression system in insect cells for expressing human NPPs as soluble secreted proteins. The extracellular portion of each gene is expressed with signal peptides, either native to the protein or cloned from NPP2, targeting the protein for secretion. A tobacco etch virus (TEV) protease-cleavable 9x-histidine tag was cloned onto the C-terminus of each gene, allowing the protein to be purified by two rounds of Ni-NTA affinity column purification. I successfully cloned and expressed NPP1, NPP2, NPP4, and NPP5, yielding several milligrams of highly pure protein per liter of cell culture.;With pure soluble recombinant protein, I could enzymatically characterize human NPPs. I developed a coupled assay using alkaline phosphatase and a malachite green detection system to identify nucleotide and phospholipid substrates for NPP2, NPP4, and NPP5. NPP2 hydrolyzes lysophospholipids while it, contrary to previous reports, does not hydrolyze dinucleotide polyphosphates. NPP4, in contrast, hydrolyzes dinucleoside polyphosphates and not phospholipids. NPP5 did not hydrolyze any nucleotide or phospholipid substrates tested. I thoroughly characterized the steady-state activity of NPP4 using three complementary assays: the coupled assay as described above, high performance liquid chromatography analysis of substrates and products, and, for Ap3A, Ap4A, and pNP-TMP, absorbance change monitoring. Under steady-state conditions, NPP4 hydrolyzes Ap3A with a KM of 843.13 +/- 131.9 muM and a kcat of 4.247 +/- 0.403 s-1 NPP4 -1, and hydrolyzes Ap4A with a KM of 209.90 +/- 2.81 and a kcat of 0.784 +/- 0.00736 s-1 NPP4-1. These are the first enzymatic characterizations of NPP4.;We have determined the structure of NPP4 using x-ray crystallography to 1.54 angstrom resolution bound with its enzymatic product AMP. This is the first structure of a human NPP to be solved. The overall architecture and the active site catalytic residues and metals are arranged similarly to NPP2 and Xac NPP. The active site binding pocket contains a loop absent in NPP2 forming a back wall, preventing longer substrates from binding. The binding pocket of NPP4 also contains tyr154, which forms a pi-pi stacking interaction the bound adenosine, stabilized by phe71. In other NPP family members such as NPP5, the homologous residues make the binding pocket smaller and electrostatically unfavorable for AMP.;The physiological role and substrate of NPP4 is unknown. We identified Ap3A as an NPP4 substrate. Ap3A is secreted from platelets, adrenal chromaffin cells, and brain synaptic terminals, so we investigated whether NPP4 is present in any of their microenvironments. Using immunofluorescence, we found NPP4 in the human brain vascular endothelium. Diadenosine polyphosphatase hydrolase activity has been reported in vascular endothelia, but a specific enzyme has never been identified. Diadenosine polyphosphates and their hydrolysis products ADP and ATP are agonists and antagonists of platelet aggregation respectively. As NPP4 is a diadenosine polyphosphate hydrolase found on vascular endothelia, we hypothesize that it is an in vivo regulator of platelet aggregation. Using light-transmission aggregometry, we found that NPP4 and Ap3A stimulate platelet aggregation in a dose-dependent manner, showing complete irreversible aggregation at 80 nM NPP4 and 80 muM Ap3A. Platelets can have dense granule secretion deficiencies, either congenital, such as storage pool disease, or acquired, such as through the administration of nonsteroidal anti-inflammatory drugs (NSAIDs), reducing platelets' ability to aggregate. In platelets with dense granule secretion deficiencies, 40-50 nM of exogenous NPP4 is able to normalize platelet aggregation.;Antiplatelet therapies, such as low-dose aspirin and clopidogrel, are used to prevent heart attacks, strokes, and other cardiovascular diseases, the top causes of death in the developed world. However, as current antiplatelet therapies inhibit platelet function systemically, they increase the risk by 1 percent of major bleeding requiring transfusion. Targeting NPP4 for inhibition may be a means to localize an antithrombotic effect to the site of thrombus formation. In contrast, exogenous NPP4 may be a means of treating bleeding disorders resulting from intrinsic platelet granule defects. Our studies of NPP4 give us a model and techniques for studying the roles and characteristics of human NPP-family enzymes.
机译:核苷酸焦磷酸酶/磷酸二酯酶(NPPs)是在真核生物和细菌中发现的一种水解核苷酸或脂质磷酸二酯的酶家族。在真核生物中,它们以分泌的或膜结合蛋白的形式表达,并已知能调节多种生理过程,包括心血管功能,肿瘤发展和生物矿化。尽管它们具有预期的结构相似性,但NPP底物特异性却相差很大:NPP1和NPP3是核苷酸水解酶,NPP2,NPP6和NPP7是磷脂水解酶,而NPP4和NPP5未表征。已解决了NPP的两种结构:一种来自细菌Xanthomonas axonopodis pv。 citri以及NPP2的小鼠和大鼠亚型。;我们在昆虫细胞中开发了杆状病毒表达系统,用于将人NPPs表达为可溶性分泌蛋白。每个基因的细胞外部分都用信号肽表达,该信号肽对蛋白质而言是天然的,或者是从NPP2克隆的,靶向蛋白质进行分泌。将烟草蚀刻病毒(TEV)蛋白酶可裂解的9x-组氨酸标签克隆到每个基因的C末端,从而通过两轮Ni-NTA亲和柱纯化来纯化该蛋白质。我成功地克隆并表达了NPP1,NPP2,NPP4和NPP5,每升细胞培养物中产生了几毫克的高纯度蛋白质。使用纯的可溶性重组蛋白,我可以酶促表征人类NPP。我开发了一种使用碱性磷酸酶和孔雀石绿检测系统的偶联测定法,以鉴定NPP2,NPP4和NPP5的核苷酸和磷脂底物。 NPP2水解溶血磷脂,而与以前的报道相反,它不水解二核苷酸多磷酸酯。相反,NPP4水解二核苷多磷酸而不是磷脂。 NPP5不会水解任何测试的核苷酸或磷脂底物。我使用三种互补测定法彻底表征了NPP4的稳态活性:如上所述的偶联测定法,底物和产物的高效液相色谱分析,以及对于Ap3A,Ap4A和pNP-TMP的吸光度变化监测。在稳态条件下,NPP4水解KM为843.13 +/- 131.9μM和kcat为4.247 +/- 0.403 s-1 NPP4 -1的Ap3A,并水解KM为209.90 +/- 2.81和kcat的Ap4A 0.784 +/- 0.00736 s-1 NPP4-1。这些是NPP4的第一个酶促表征。我们已经使用X射线晶体学确定了NPP4的结构,其分辨率为1.54埃,并与酶促产物AMP结合。这是要解决的人类核电厂的第一个结构。总体结构以及活性位点催化残留物和金属的布置与NPP2和Xac NPP相似。活性位点结合袋包含NPP2中不存在的环,形成后壁,从而防止更长的底物结合。 NPP4的结合口袋还包含tyr154,它与phe71稳定的结合腺苷形成pi-pi堆积相互作用。在其他NPP家族成员(如NPP5)中,同源残基使结合袋变小,并且在静电上不利于AMP。NPP4的生理作用和底物尚不清楚。我们确定Ap3A为NPP4底物。 Ap3A是从血小板,肾上腺嗜铬细胞和脑突触末端分泌的,因此我们调查了NPP4是否存在于它们的任何微环境中。使用免疫荧光,我们在人脑血管内皮中发现了NPP4。在血管内皮中已经报道了腺苷多磷酸酶水解酶活性,但是尚未鉴定出特定的酶。腺苷多磷酸盐及其水解产物ADP和ATP分别是血小板聚集的激动剂和拮抗剂。由于NPP4是在血管内皮细胞上发现的一种腺苷多磷酸水解酶,我们假设它是血小板聚集的体内调节剂。使用透光聚集法,我们发现NPP4和Ap3A以剂量依赖性方式刺激血小板聚集,在80 nM NPP4和80μMAp3A处显示出完全不可逆的聚集。血小板可能具有先天性如贮藏池病等致密的颗粒分泌缺陷,或因服用非甾体类抗炎药(NSAIDs)而获得,从而降低了血小板的聚集能力。在具有致密颗粒分泌缺陷的血小板中,40-50 nM的外源NPP4能够使血小板聚集正常化。抗血小板疗法,例如低剂量阿司匹林和氯吡格雷,用于预防心脏病,中风和其他心血管疾病,发达国家的主要死因。但是,由于当前的抗血小板疗法会全身性地抑制血小板功能,因此将需要输血的主要出血风险增加了1%。将NPP4靶向抑制可能是将抗血栓形成作用定位于血栓形成部位的一种手段。相反,外源性NPP4可能是治疗内在血小板颗粒缺陷导致的出血性疾病的一种手段。我们对NPP4的研究为我们提供了一种模型和技术,用于研究人类NPP家族酶的作用和特征。

著录项

  • 作者

    Chang, William Chozen.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biochemistry.;Pathology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号