首页> 外文学位 >ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers.
【24h】

ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers.

机译:ZnCdMgSe作为先进光子设备的材料平台:宽带量子级联检测器和绿色半导体圆盘激光器。

获取原文
获取原文并翻译 | 示例

摘要

The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors.;The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of devices. Growth interruptions improvements were evident both by sharper PL peaks on multilayer structures and by narrow and more efficient electroluminescence emission on intersubband devices. By using these techniques, and using materials lattice matched to InP, we then developed the first II-VI based QC detector with high responsivity for 3.5 and 2.5mum IR wavelengths, explored the combination of several detector cores arrangements to make a broadband IR detectors, and achieved a QC broadband detector operating from 3.3 to 6 mum also with high responsivity and high detectivity. For the visible lasers, we have successfully combined distributed Bragg reflectors (DBRs) and resonant cavity MQW structures into a single device to achieve green semiconductor disk lasers (SDL). We also investigated novel strain engineered multiple quantum wells (MQWs) using CdSe and ZnSe strained layers. This last research provided materials with shorter wavelength activity in the IR, achieving absorption as low as 2.5 mum, and visible red emission lattice matched to InP, providing new building blocks for all of the above mentioned devices. Our results demonstrate the outstanding capabilities of the material system, and provide tools and techniques for further development.
机译:ZnCdMgSe II-VI材料家族具有独特而有前途的特性,在实际应用中可能有用。例如,可以将它们生长成晶格匹配的InP衬底,晶格匹配的带隙范围为2.1到3.5 eV,可以成功地掺杂n型,具有大的导带偏移(CBO),并且在应变时不存在音程差,它们具有较低的平均声子能量,并且InP晶格常数位于ZnSe和CdSe二元化合物的中间,从而为拉伸和压缩应力的实验提供了空间。但是,尚未对其在实际设备中的使用进行详细研究。在这里,我们确定了目前正在开发的两种类型的器件,这些器件得益于基于ZnCdMgSe的材料特性。它们是在可见范围内发射的子带间(ISB)量子级联(QC)检测器和光泵浦半导体激光器。使用我们研究中开发的ZnCdMgSe材料系统,可以轻松克服在可见光谱的橙绿色部分中工作的半导体激光器的不足。可用的无应变限制的大CBO允许扩展ISB设备的工作波长,从而提供比目前市售设备更短和更长的波长。也可以利用此特性来开发宽带室温操作ISB检测器。这里提出的工作首先集中在使用基于ZnCdMgSe的材料特性和参数来理解和预测其异质结构的带间和子带间跃迁。为此,我们通过非接触电反射,光致发光,FTIR透射率研究了QC器件的有源区域,并通过转移矩阵建模将测量结果与量子阱结构相关联。然后,我们通过研究生长中断对其器件的光学和光电特性的影响,来优化ZnCdMgSe材料异质结构的质量。多层结构上更尖锐的PL峰以及子带间器件上更窄且更有效的电致发光均可以明显看出生长中断的改善。通过使用这些技术,并使用与InP匹配的材料,我们开发了首款基于II-VI的QC检测器,该检测器对3.5和2.5mum红外波长具有高响应度,探索了几种检测器芯结构的组合,以制造宽带红外检测器,并实现了从3.3微米到6微米的QC宽带检测器,并且具有高响应度和高检测率。对于可见光激光器,我们已经成功地将分布式布拉格反射器(DBR)和谐振腔MQW结构组合到单个设备中,以实现绿色半导体圆盘激光器(SDL)。我们还研究了使用CdSe和ZnSe应变层的新型应变工程多量子阱(MQW)。这项最新的研究为材料提供了在IR中具有较短波长活性的材料,吸收低至2.5 mm,并且可见的红色发射晶格与InP相匹配,为上述所有器件提供了新的构建基块。我们的结果证明了材料系统的出色功能,并提供了进一步开发的工具和技术。

著录项

  • 作者

    De Jesus, Joel.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Physics.;Optics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号