首页> 外文学位 >PkANN: Non-Linear Matter Power Spectrum Interpolation through Artificial Neural Networks.
【24h】

PkANN: Non-Linear Matter Power Spectrum Interpolation through Artificial Neural Networks.

机译:PkANN:通过人工神经网络进行非线性物质功率谱插值。

获取原文
获取原文并翻译 | 示例

摘要

We investigate the interpolation of power spectra of matter fluctuations using artificial neural networks (ANNs). We present a new approach to confront small-scale non-linearities in the matter power spectrum. This ever-present and pernicious uncertainty is often the Achilles' heel in cosmological studies and must be reduced if we are to see the advent of precision cosmology in the late-time Universe. We detail how an accurate interpolation of the matter power spectrum is achievable with only a sparsely sampled grid of cosmological parameters. We show that an optimally trained ANN, when presented with a set of cosmological parameters (Omh2 , Obh2, ns, w0, sigma8, sum mnu and z), can provide a worst-case error ≤ 1 per cent (for redshift z ≤ 2) fit to the non-linear matter power spectrum deduced through large-scale N-body simulations, for modes up to k ≤ 0.9 hMpc-1 . Our power spectrum interpolator, which we label 'PkANN', is designed to simulate a range of cosmological models including massive neutrinos and dark energy equation of state w 0 ≠ -1. PkANN is accurate in the quasi-non-linear regime (0.1 hMpc-1 ≤ k ≤ 0.9 hMpc -1) over the entire parameter space and marks a significant improvement over some of the current power spectrum calculators. The response of the power spectrum to variations in the cosmological parameters is explored using PkANN. Using a compilation of existing peculiar velocity surveys, we investigate the cosmic Mach number statistic and show that PkANN not only successfully accounts for the non-linear motions on small scales, but also, unlike N-body simulations which are computationally expensive and/or infeasible, it can be an extremely quick and reliable tool in interpreting cosmological observations and testing theories of structure-formation.
机译:我们使用人工神经网络(ANN)研究物质涨落的功率谱插值。我们提出了一种解决物质功率谱中小规模非线性问题的新方法。这种永远存在且有害的不确定性通常是宇宙学研究的致命弱点,如果我们要在晚期宇宙中看到精确宇宙学的到来,必须减少这种弱点。我们将详细介绍如何仅使用稀疏采样的宇宙学参数网格即可实现对物质功率谱的精确内插。我们显示,当训练有素的人工神经网络带有一组宇宙学参数(Omh2,Obh2,ns,w0,sigma8,和mnu和z)时,可以提供最坏情况的误差≤1%(对于红移z≤2 )适用于通过k≤0.9 hMpc-1的模式通过大规模N体模拟得出的非线性物质功率谱。我们的功率谱插值器(我们标记为“ PkANN”)旨在模拟一系列宇宙模型,其中包括大量中微子和状态为w 0≠-1的暗能量方程。在整个参数空间中,PkANN在准非线性状态下(0.1 hMpc-1≤k≤0.9 hMpc -1)是准确的,并且相对于某些当前功率谱计算器而言,具有明显的改进。使用PkANN探索功率谱对宇宙学参数变化的响应。使用现有的特殊速度测量的汇编,我们研究了宇宙马赫数统计,并表明PkANN不仅成功地解决了小尺度上的非线性运动,而且与N体模拟不同,后者在计算上是昂贵的和/或不可行的,它在解释宇宙观测和检验结构形成理论方面可以是一种非常快速和可靠的工具。

著录项

  • 作者

    Agarwal, Shankar.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号