首页> 外文学位 >Molecular level studies of water-mediated interactions and their role in biomolecular self-assembly.
【24h】

Molecular level studies of water-mediated interactions and their role in biomolecular self-assembly.

机译:水介导的相互作用及其在生物分子自组装中的作用的分子水平研究。

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on the theoretical and computational studies of the role of water and water-mediated interactions in biological self-assembly. The work specifically focuses on the response of biological self-assembly phenomena to thermodynamic stresses, such as high temperature and pressure, and extremes in solution conditions (e.g., the presence of salts, additives, or denaturants). The response of biological systems to thermodynamic perturbations, apart from their direct relevance to engineering applications, also provides useful insights into the role of key intermolecular interactions that drive the assembly.; At the simplest level of description, the effects of environmental stress on biomolecular stability and phase behavior can be understood by studying their effects on primary stabilizing interactions, namely, hydrophobic interactions. Exhaustive studies are presented here on the temperature, pressure, and salt concentration dependence of two- and three-particle hydrophobic interactions between molecular solutes. Our investigations of salt effects on hydrophobic phenomena show a clear strengthening of hydrophobic interactions with addition of NaCl. Further, preferential exclusion of salt ions from the region vicinal to hydrophobic solutes can be used in a theoretical approach to predict the changes in the stability of different conformations of a hydrophobic solute.; We designed a model hydrophobic polymer that is sufficiently large to encompass the nanometer and larger scale hydrophobic phenomena through studies of its conformational equilibrium. The free energy landscape of this polymer was characterized in water at various temperatures and pressures, and in aqueous solutions of additives. The effects of environmental stress on the relative stability of folded and unfolded polymer conformations allow us to address the recently posited crossover of hydrophobic effects at large length scales. (Abstract shortened by UMI.)
机译:本文主要研究水和水介导的相互作用在生物自组装中的作用的理论和计算研究。这项工作特别着重于生物自组装现象对热力学应力(如高温和高压)以及极端溶液条件(例如,盐,添加剂或变性剂的存在)的响应。生物系统对热力学扰动的响应,除了与工程应用直接相关外,还提供了对驱动组装的关键分子间相互作用的作用的有用见解。在最简单的描述层次上,可以通过研究环境应力对主要稳定相互作用(即疏水性相互作用)的影响来理解环境应力对生物分子稳定性和相行为的影响。本文介绍了分子溶质之间两粒子和三粒子疏水作用的温度,压力和盐浓度依赖性的详尽研究。我们对盐对疏水现象的影响的研究表明,添加氯化钠后疏水相互作用明显增强。此外,可以在理论方法中将盐离子从邻近区域优先排除到疏水性溶质中,以预测疏水性溶质的不同构象的稳定性的变化。通过研究其构象平衡,我们设计了一个模型疏水聚合物,该聚合物足够大以包含纳米和更大范围的疏水现象。该聚合物的自由能态以在各种温度和压力下的水以及在添加剂的水溶液中为特征。环境应力对折叠的和未折叠的聚合物构象的相对稳定性的影响使我们能够解决最近在大尺度上出现的疏水作用的交叉问题。 (摘要由UMI缩短。)

著录项

  • 作者

    Ghosh, Tuhin.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号