首页> 外文学位 >Polymer Microresonator Sensors Embedded in Digital Electrowetting on Dielectric Microfluidics Systems.
【24h】

Polymer Microresonator Sensors Embedded in Digital Electrowetting on Dielectric Microfluidics Systems.

机译:嵌入在电介质微流控系统中的数字电润湿中的聚合物微谐振器传感器。

获取原文
获取原文并翻译 | 示例

摘要

Integrated sensing systems are designed to address a variety of problems, including clinical diagnosis, water quality testing, and air quality testing. The growing prevalence of tropical diseases in the developing world, such as malaria, trypanosomiasis (sleeping sickness), and tuberculosis, provides a clear and present impetus for portable, low cost diagnostics both to improve treatment outcomes and to prevent the development of drug resistance in a population. The increasing scarcity of available clean, fresh water, especially noticeable in the developing world, also presents a motivation for low-cost water quality diagnostic tools to prevent exposure of people to contaminated water supplies and to monitor those water supplies to effectively mitigate their contamination. In the developed world, the impact of second-hand cigarette smoke is receiving increased attention, and measuring its effects on public health have become a priority. The `point-of-need' technologies required to address these sensing problems cannot achieve a widespread and effective level of use unless low-cost, small form-factor, portable sensing devices can be realized. Optical sensors based on low cost polymer materials have the potential to address the aforementioned `point-of-need' sensing problems by leveraging low-cost materials and fabrication processes. For portable clinical diagnostics and water quality testing in particular, on-chip sample preparation is a necessity. Electrowetting-on-dielectric (EWD) technology is an enabling technology for chip-scale sample preparation, due to its very low power consumption compared to other microfluidics technologies and the ability to move fluids without bulky external pumps. Potentially, these technologies could be combined into a cell phone sized portable sensing device.;Towards the goal of developing a portable diagnostic device using EWD microfluidics with an embedded polymer microresonator sensor, this thesis describes a viable fabrication process for the system and explores the design trade-offs of such a system. The main design challenges for this system are optimization of the sensor's limit-of-detection, minimization of the insertion loss of the optical system, and maintaining the ability to actuate droplets onto and off of the sensor embedded in the microfluidic system. The polymer microresonator sensor was designed to optimize the limit-of-detection (LOD) using SU-8 polymer as the bus waveguide and microresonator material and SiO 2 as the substrate cladding material. The fabrication process and methodology were explored with test devices using a tunable laser system working around a wavelength of 1550 nm using glucose solutions as a refractive index standard. This sensor design was then utilized to embed the sensor and bus waveguides into an EWD top plate in order to minimize the impact of the sensor integration on microfluidic operations. Finally, the performance of the embedded sensor embedded was evaluated in the same manner and compared to the performance of the sensor without the microfluidic system. The primary result of this research was the successful demonstration of a high performance polymer microresonator sensor embedded in the top plate of an electrowetting microfluidic device. The embedded sensor had the highest reported figure-of-merit for any microresonator integrated with electrowetting microfluidics. The embedded microresonator sensor was also the first fully-embedded microresonator in an EWD system. Because the sensor was embedded in the top plate, full functionality of the EWD system was maintained, including the ability to move droplets onto and off of the sensor and to address the sensor with single droplets. Furthermore, the highest figure-of-merit for an SU-8 microresonator sensor yet reported at a probe wavelength of 1550 nm was measured on a test device fabricated with the embedded sensor structure described herein. Optimization of the sensor sensitivity utilized recently developed waveguide sensor design theory, which accurately predicted the measured sensitivity of the sensors. Altogether, the results show that embedding of a microresonator sensor in an EWD microfluidics system is a viable approach to develop a portable diagnostic system with the high efficiency sample preparation capability provided by EWD microfluidics and the versatile sensing capability of the microresonator sensor.
机译:集成传感系统旨在解决各种问题,包括临床诊断,水质检测和空气质量检测。在发展中国家,诸如疟疾,锥虫病(昏睡病)和结核病等热带疾病的日益流行,为便携式,低成本的诊断提供了清晰而又当前的动力,既可以改善治疗效果,又可以预防耐药性的发展。人口。可用的清洁淡水的日益增加,尤其是在发展中国家尤为明显,这也为低成本水质诊断工具提供了动力,以防止人们接触受污染的水源并监控这些水源以有效减轻其污染。在发达国家,二手烟的影响正受到越来越多的关注,衡量其对公共健康的影响已成为当务之急。除非能够实现低成本,小尺寸,便携式传感设备,否则解决这些传感问题所需的“需求点”技术无法达到广泛有效的使用水平。基于低成本聚合物材料的光学传感器具有通过利用低成本材料和制造工艺来解决上述“需求点”传感问题的潜力。特别是对于便携式临床诊断和水质测试,片上样品制备是必不可少的。介电上电润湿(EWD)技术是一种用于芯片级样品制备的使能技术,因为与其他微流体技术相比,它的功耗非常低,并且无需大体积的外部泵即可移动流体。有望将这些技术组合成手机大小的便携式传感设备。为了实现使用带有嵌入式聚合物微谐振器传感器的EWD微流体开发便携式诊断设备的目标,本文描述了该系统的可行制造过程并探索了设计这种系统的权衡。该系统的主要设计挑战是优化传感器的检测极限,最小化光学系统的插入损耗以及保持将液滴驱动到嵌入微流体系统中的传感器上和从液滴中释放出来的能力。设计聚合物微谐振器传感器,以使用SU-8聚合物作为总线波导和微谐振器材料以及SiO 2作为衬底包层材料来优化检测限(LOD)。使用可调谐激光系统,使用葡萄糖溶液作为折射率标准,使用可调谐激光系统在1550 nm波长下工作,利用测试设备探索了制造工艺和方法。然后,利用该传感器设计将传感器和总线波导嵌入到EWD顶板中,以最小化传感器集成对微流体操作的影响。最后,以相同的方式评估嵌入式传感器的性能,并将其与没有微流体系统的传感器性能进行比较。这项研究的主要成果是成功演示了嵌入在电润湿微流体设备顶板上的高性能聚合物微谐振器传感器。对于任何集成了电润湿微流体的微谐振器,嵌入式传感器的品质因数最高。嵌入式微谐振器传感器也是EWD系统中的第一个完全嵌入式微谐振器。由于传感器嵌入在顶板中,因此EWD系统的全部功能得以保留,包括将液滴移入或移出传感器以及使用单个液滴对传感器进行寻址的能力。此外,在使用本文所述的嵌入式传感器结构制造的测试装置上,测量了在1550 nm探针波长下仍报告过的SU-8微谐振器传感器的最高品质因数。传感器灵敏度的优化利用了最近开发的波导传感器设计理论,该理论可准确预测传感器的测量灵敏度。总之,结果表明,将微谐振器传感器嵌入EWD微流控系统中是开发便携式诊断系统的可行方法,该系统具有EWD微流控技术提供的高效样品制备能力以及微谐振器传感器的通用传感能力。

著录项

  • 作者

    Royal, Matthew.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 293 p.
  • 总页数 293
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号