首页> 外文学位 >Capture of laser-cooled atoms with a carbon nanotube.
【24h】

Capture of laser-cooled atoms with a carbon nanotube.

机译:用碳纳米管捕获激光冷却的原子。

获取原文
获取原文并翻译 | 示例

摘要

We observe the capture and field ionization of individual atoms near the side-wall of a single, positively-charged, suspended carbon nanotube. The steep cylindrically-symmetric field gradient around the nanotube creates an attractive force that captures polarizable atoms, corresponding to a highly singular inverse-square potential. In this potential, atoms with angular momenta below a critical threshold value, determined by the charge on the nanotube, will be pulled towards the singularity at the origin of the potential-energy landscape. The strong fields near the nanotube will ionize the captured atoms, and these ions can be individually counted with a nearby ion detector operated in discrete pulse-counting mode. Extremely large cross-sections for ionization from a laser-cooled atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. Efficient and sensitive neutral atom detectors can be based on the capture and field-ionization processes, as we have demonstrated.;The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data. When atoms are captured, we expect that the capture cross-section will increase as a linear function of the voltage applied to the nanotube. We observe this behavior for charging voltages of 150--300 V, which demonstrates the proportionality between the capture cross-section and the strength of the electric field. The field affects the ionization process as well, and we report two pertinent observations: (1) the creation of ions is suppressed below 150 V, corresponding to the conditions where the field strength at the surface of the nanotube is no longer sufficient to rapidly ionize captured atoms; and (2) we observe prompt and delayed ionization events related to the locations at which these events occur, revealing that the strength of the field determines whether an ion generated very close to the surface will quickly escape from the attraction of its own image charge. Investigation of these effects reveals a rich variety of physical behaviors in the nanoscale regime.
机译:我们观察到单个带正电荷的悬浮碳纳米管侧壁附近单个原子的捕获和场电离。围绕纳米管的陡峭的圆柱对称场梯度会产生引力,该引力捕获可极化的原子,对应于高度奇异的平方反比电势。在此电势下,角矩小于临界阈值(由纳米管上的电荷确定)的原子将被拉向势能图谱的起点处的奇点。纳米管附近的强场将使捕获的原子电离,并且可以使用附近的以离散脉冲计数模式运行的离子检测器分别对这些离子进行计数。由于纳米管的小半径和较长的长度,在适度的电压下观察到从激光冷却的原子束电离的极大截面。正如我们已经证明的那样,高效,灵敏的中性原子探测器可以基于捕获和场电离过程。数据中清楚地区分了场强对原子捕获和电离过程的影响。当捕获原子时,我们预计捕获截面将随着施加到纳米管的电压的线性函数而增加。我们观察到充电电压为150--300 V时的这种行为,这证明了捕获横截面与电场强度之间的比例关系。该场也会影响电离过程,我们报告了两个相关的观察结果:(1)离子的产生被抑制在150 V以下,这对应于纳米管表面的场强不再足以快速电离的条件捕获的原子; (2)我们观察到与这些事件发生的位置有关的及时电离事件和延迟电离事件,这表明电场强度决定了非常靠近表面生成的离子是否会迅速摆脱其自身图像电荷的吸引。对这些影响的研究揭示了纳米尺度机制中各种各样的物理行为。

著录项

  • 作者

    Goodsell, Anne Laurel.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Low Temperature.;Physics Atomic.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号