首页> 外文学位 >Quantum impurities in a two-dimensional Heisenberg antiferromagnet.
【24h】

Quantum impurities in a two-dimensional Heisenberg antiferromagnet.

机译:二维Heisenberg反铁磁体中的量子杂质。

获取原文
获取原文并翻译 | 示例

摘要

The study of quantum phase transitions in the presence of disorder is at the forefront of research in the field of strongly correlated electron systems, yet there have been relatively few experimental model systems. One important class of model systems for studying the effects of quenched disorder is magnetic materials with random site dilution. Percolation in classical high-spin magnetic systems has been studied extensively, and magnetic order persists in these materials up to the percolation threshold (the point at which dilution breaks the magnetic lattice into finite-sized disconnected clusters). The spin-1/2 square-lattice Heisenberg antiferromagnet (SLHAF) is of particular interest because of its connection to high-temperature superconductivity. However, previous results for magnetic dilution in the spin-1/2 SLHAF have been confined to dilution levels well below the percolation threshold, leaving many questions about this complex quantum-impurity problem unanswered.; Single crystals of La2Cu1−p (Zn,Mg)pO4 at concentrations up to and beyond the site percolation threshold provide the first experimental realization of quantum percolation in a spin-1/2 SLHAF. Complementary magnetometry, neutron scattering, and numerical experiments demonstrate that La2Cu1−p(Zn,Mg) pO4 is an excellent model material for studying this problem in the low-spin limit. Measurements of the ordered moment and spin correlations provide important quantitative information for tests of theories for this complex quantum-impurity problem. Quantum Monte Carlo results for the bilayer Heisenberg anti-ferromagnet allow the determination of the quantum-fluctuation versus geometric-disorder phase diagram, and indicate that the properties of La2Cu1−p(Zn,Mg) pO4 near the percolation threshold are controlled by the effective proximity to a new quantum critical point.
机译:在无序存在下量子相变的研究处于强相关电子系统领域的研究的最前沿,但是实验模型系统却相对较少。用于研究淬灭失调影响的一类重要的模型系统是具有随机位置稀释的磁性材料。古典高自旋磁系统中的渗流已得到广泛研究,并且这些材料中的磁序一直持续到渗流阈值(稀释将磁晶格分解成有限大小的不连续簇的点)。自旋1/2方格海森堡反铁磁体(SLHAF)特别令人关注,因为它与高温超导性有关。然而,以前在spin-1 / 2 SLHAF中进行磁稀释的结果仅限于远低于渗滤阈值的稀释水平,这使关于这个复杂的量子杂质问题的许多问题没有得到解答。 La 2 Cu 1 − p (Zn,Mg) p < / sub> O 4 的浓度高达或超过位点渗透阈值,这是在spin-1 / 2 SLHAF中首次实现量子渗透的实验性实现。互补磁力分析,中子散射和数值实验表明,La 2 Cu 1-−subsub p (Zn,Mg) p O 4 是研究低旋转极限问题的出色模型材料。对有序矩和自旋相关性的测量为该复杂量子杂质问题的理论测试提供了重要的定量信息。双层Heisenberg反铁磁体的量子蒙特卡罗结果可确定量子涨落与几何无序相图,并表明La 2 Cu 1- p (Zn,Mg) p O 4 接近渗透阈通过有效接近新的量子临界点来控制。

著录项

  • 作者

    Vajk, Owen Peter.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号