首页> 外文学位 >Quantum imaging of biological specimens using entangled photons.
【24h】

Quantum imaging of biological specimens using entangled photons.

机译:使用纠缠光子对生物标本进行量子成像。

获取原文
获取原文并翻译 | 示例

摘要

Over the last decade, two-photon microscopy and optical coherence tomography (OCT) have emerged as two of the most widespread techniques for performing high-resolution, three-dimensional optical imaging of the internal structure of biological specimens Two-photon microscopy relies on the use of dye molecules as markers that only fluoresce when they accidentally absorb two laser photons simultaneously. To enhance the probability of absorption, and thus provide more efficient imaging; expensive femtosecond-pulsed lasers are typically employed. OCT, on the other hand, is a form of range finding that makes use of photons one-at-a-time and the second-order coherence properties of a classical laser source to enable sectioning of specimens. Each imaging modality is enabled by distinct properties of the light source and ultimately yields information about structure and/or refractive index properties of the specimen. An ability to measure changes in these physical properties provides a means to track pathological processes or evaluate the viability and integrity of biological specimens.; In this work, we explore the merits and challenges of using a source of entangled photons to enable analogous non-classical two-photon imaging techniques. The configuration for two-photon microscopy is a case in which the object interacts with both beams simultaneously. However, since entangled photons are guaranteed to be emitted pair wise, it has been hypothesized that they should be absorbed more readily so that imaging can be accomplished at reduced light levels. This would permit extended functional imaging of light-sensitive specimens. Alternatively, using photon pairs where one of the photons scatters from the object then interferes at a beam splitter with the second photon of the pair used as a reference, describes a configuration analogous to OCT but makes use of fourth-order, rather then second-order interference effects. This method, which we call quantum optical coherence tomography (QOCT), has the distinct advantage of cancelling even-order dispersion from the specimen. We further provide a method for polarization-sensitive QOCT, in which a change in the polarization state of light scattered from a specimen due to birefringence is detected. This provides added contrast for identifying structure or pathology in thick samples where dispersion plagues conventional imaging modalities.
机译:在过去的十年中,双光子显微镜和光学相干断层扫描(OCT)成为对生物标本内部结构进行高分辨率,三维光学成像的两种最广泛的技术。双光子显微镜依赖于使用染料分子作为标记,仅当它们意外吸收两个激光光子时才发出荧光。增加吸收的可能性,从而提供更有效的成像;通常使用昂贵的飞秒脉冲激光器。另一方面,OCT是一种测距形式,它一次利用光子和经典激光源的二阶相干特性来进行标本切片。每种成像方式都可以通过光源的不同属性来启用,并最终产生有关样本结构和/或折射率属性的信息。测量这些物理性质变化的能力提供了一种追踪病理过程或评估生物样本的生存力和完整性的手段。在这项工作中,我们探讨了使用纠缠光子源实现类似的非经典两光子成像技术的优点和挑战。双光子显微镜的配置是物体同时与两个光束相互作用的情况。但是,由于保证纠缠的光子成对地发射,因此假设它们应该更容易吸收,从而可以在降低的光水平下完成成像。这将允许对光敏样品进行扩展功能成像。或者,使用光子对,其中一个光子从物体中散射出来,然后在分束器处干扰该对中的第二个光子作为参考,描述类似于OCT的配置,但使用四阶,而不是第二阶。顺序干扰效应。这种称为量子光学相干断层扫描(QOCT)的方法具有消除标本中偶数阶色散的独特优势。我们进一步提供了一种对偏振敏感的QOCT的方法,其中检测了由于双折射导致从样品散射的光的偏振状态发生变化。这为识别厚样品中的结构或病理提供了额外的对比,在这些样品中,分散液困扰着常规成像方式。

著录项

  • 作者

    Booth, Mark Christian.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Biomedical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号