首页> 外文学位 >Information-theoretic secrecy in multi-user channels.
【24h】

Information-theoretic secrecy in multi-user channels.

机译:多用户渠道中的信息理论保密性。

获取原文
获取原文并翻译 | 示例

摘要

Inherent openness of the wireless medium imposes stronger challenges on the security of wireless communications. Information-theoretic security addresses these challenges at the physical layer by using tools from wireless communication theory, signal processing and information theory. In information-theoretic security, physical layer communication is intelligently designed to exploit the characteristics of the wireless medium, such as fading, interference, cooperation, and multi-dimensional signaling, in order to provide or improve security. In this dissertation, we study the security of several fundamental wireless network configurations from an information-theoretic perspective.;First, we study the Gaussian multiple-input multiple-output (MIMO) wiretap channel. In this channel, the transmitter sends a common message to both the legitimate user and the eavesdropper. In addition to the common message, a private message is sent only to the legitimate user, which needs to be kept hidden as much as possible from the eavesdropper. We obtain the entire capacity-equivocation region for this channel model. In particular, we show the sufficiency of jointly Gaussian auxiliary random variables and channel input to evaluate the existing single-letter description of the capacity-equivocation region due to Csiszar-Korner.;Next, we study the secure broadcasting problem, where a transmitter wants to have secure communication with multiple legitimate users in the presence of an external eavesdropper. We study several special cases of the secure broadcasting problem. First, we consider the degraded multi-receiver wiretap channel, and establish its secrecy capacity region. Second, we consider the parallel less noisy multi-receiver wiretap channel, and obtain its common message secrecy capacity and sum secrecy capacity. Third, we consider the parallel degraded multi-receiver wiretap channel for the two-user and two-sub-channel case, and obtain its entire secrecy capacity region. Finally, we consider a parallel channel model with two sub-channels, where the transmitter can use only one of the subchannels at any time, and characterize its secrecy capacity region.;Then, we study the multi-receiver wiretap channel for a more general scenario, where, in addition to confidential messages, the transmitter sends public messages to the legitimate users, on which there are no secrecy constraints. First, we consider the degraded discrete memoryless channel, and obtain inner and outer bounds for the capacity region. These inner and outer bounds match for certain cases, providing the capacity region. Second, we obtain an inner bound for the general discrete memoryless channel by using Marton's inner bound. Third, we consider the degraded Gaussian MIMO channel, and show that jointly Gaussian auxiliary random variables and channel input are sufficient to exhaust the inner and outer bounds. Finally, we provide an inner bound for the capacity region of the general Gaussian MIMO channel.;Finally, we revisit the secure lossy source coding problem. In all works on this problem, either the equivocation of the source at the eavesdropper or the equivocation of the legitimate user's reconstruction of the source at the eavesdropper is used to measure secrecy. We first propose the relative equivocation of the source at the eavesdropper with respect to the legitimate user as a new secrecy measure. We argue that this new secrecy measure is the one that corresponds to the natural generalization of the equivocation in a wiretap channel to the context of secure lossy source coding. Under this new secrecy measure, we provide a single-letter description of the rate, relative equivocation and distortion region, as well as its specializations to degraded and reversely degraded cases. We investigate the relationships between the optimal scheme that attains this region and the Wyner-Ziv scheme. (Abstract shortened by UMI.).
机译:无线介质的固有开放性对无线通信的安全性提出了更严峻的挑战。信息理论安全通过使用无线通信理论,信号处理和信息理论中的工具在物理层解决了这些挑战。在信息理论安全性中,物理层通信被智能地设计为利用无线介质的特性,例如衰落,干扰,协作和多维信令,以提供或改善安全性。本文从信息论的角度研究了几种基本的无线网络配置的安全性。首先,研究了高斯多输入多输出窃听通道。在此通道中,发送器向合法用户和窃听者发送公共消息。除了公共消息外,私人消息仅发送给合法用户,合法用户需要尽可能避免对窃听者隐藏。我们获得此通道模型的整个容量等同区域。尤其是,我们展示了联合高斯辅助随机变量和信道输入的充分性,以评估由于Csiszar-Korner而导致的容量等效区域的现有单字母描述。接下来,我们研究了发射机想要的安全广播问题在存在外部窃听者的情况下与多个合法用户进行安全通信。我们研究了安全广播问题的几种特殊情况。首先,我们考虑降级的多接收机窃听通道,并建立其保密能力区域。其次,考虑并行的低噪声多接收者窃听信道,并获得其公共消息保密能力和总保密能力。第三,我们针对两个用户和两个子信道的情况考虑并行降级的多接收机窃听信道,并获得其整个保密容量区域。最后,我们考虑具有两个子信道的并行信道模型,其中发射机可以在任何时间仅使用其中一个子信道,并描述其保密容量区域;然后,我们研究了多接收机窃听信道的更一般性在这种情况下,除了机密消息外,发送方还向合法用户发送公共消息,而这些用户没有保密约束。首先,我们考虑降级的离散无记忆通道,并获得容量区域的内部和外部边界。这些内部和外部边界在某些情况下匹配,从而提供了容量区域。其次,我们通过使用Marton的内边界来获得通用离散无记忆通道的内边界。第三,我们考虑了降级的高斯MIMO信道,并表明联合高斯辅助随机变量和信道输入足以耗尽内部和外部边界。最后,我们为一般的高斯MIMO信道的容量区域提供了一个内边界。最后,我们重新审视了安全有损源编码问题。在所有有关此问题的著作中,要么在窃听者处对源进行模棱两可,要么在窃听者处对合法用户对源的重构进行模棱两可来衡量保密性。我们首先提出窃听者相对于合法用户的相对模糊性,作为一种新的保密措施。我们认为,这种新的保密措施是一种对应于在窃听通道中对安全有损源编码的上下文中的模棱两可的自然概括的措施。在这种新的保密措施下,我们提供比率,相对模棱两可和失真区域及其对降级和反向降级案例的专业化的单字母描述。我们研究了达到该区域的最优方案与Wyner-Ziv方案之间的关系。 (摘要由UMI缩短。)。

著录项

  • 作者

    Ekrem, Ersen.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 807 p.
  • 总页数 807
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号