首页> 外文学位 >The potential of industrial waste and agricultural feedstock towards sustainable biofuels production: Techno-economic and environmental impact perspectives.
【24h】

The potential of industrial waste and agricultural feedstock towards sustainable biofuels production: Techno-economic and environmental impact perspectives.

机译:工业废物和农业原料对可持续生物燃料生产的潜力:技术经济和环境影响的观点。

获取原文
获取原文并翻译 | 示例

摘要

This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production.;In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration.;The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E ( Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time.;The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer ® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively.;Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO 2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.
机译:本博士研究由三个主要部分组成; (i)表征研究,以分析来自干玉米工厂的脱脂玉米糖浆(DCS)的组成(ii)使用DCS进行水解实验以优化可发酵糖和氨基酸平台的生产,以及(iii)可持续性分析。 DCS的分析包括总固体,灰分,总蛋白质,氨基酸,无机元素,淀粉,总碳水化合物,木质素,有机酸,甘油和官能团的存在。总固体含量为37.4重量%(±0.4%),并且质量平衡封闭为101%。总碳水化合物[27%(±5%)wt。]由淀粉(5.6%),可溶性单体碳水化合物(12%)和非淀粉碳水化合物(10%)组成。半纤维素成分(结构性和非结构性)为;木聚糖(6%),木糖(1%),甘露聚糖(1%),甘露糖(0.4%),阿拉伯聚糖(1%),阿拉伯糖(0.4%),半乳聚糖(3%)和半乳糖(0.4%)。根据测得的物理和化学成分,生化转化途径和随后发酵为增值产品的过程被认为是有希望的。 DCS有潜力作为生产生物基化学品的重要发酵原料。在糖水解实验中,分析了酸浓度和保留时间等反应参数,以确定使单体糖产量最大化的最佳条件,同时将抑制剂保持在最低。进行稀酸预处理(DAP)时,产生的可发酵糖总量可达到理论收率的约86%。 DAP和随后的酶促水解对于0 wt%的酸水解产物样品最有效,而对于1 wt%和2 wt%的酸水解产物样品效率最低。从行业的角度来看,最佳的水解方案DCS是在2 wt%的酸浓度下独立进行60分钟的稀酸水解;水解反应时间,温度和酶与底物比例的综合作用共同开发了可优化生产的水解过程研究了DCS中氨基酸的含量。研究了使用DCS生产氨基酸的四个关键水解途径。第一个水解途径是使用DAP进行氨基酸分析。第二个途径是DCS的DAP,然后使用蛋白酶[胰蛋白酶,链霉蛋白酶E(灰链霉菌)和Protex 6L]进行蛋白质水解。第三条水解途径研究了在DCS上使用蛋白酶(胰蛋白酶,蛋白酶Pronase E,Protex 6L和Alcalase)的独立实验,无需任何预处理。最终途径研究了使用Accellerase1500®和Protex 6L在24小时的水解反应时间内同时生产可发酵的糖和氨基酸的方法。该博士研究的技术经济分析的三个主要目标包括: (i)开发使用DCS用DAP生产糖和氨基酸平台的工艺设计(ii)初步成本分析以估算该设施的初始资本成本和运营成本(iii)温室气体分析了解该设施对环境的影响。使用AspenPlus®,已构建了概念性的过程设计。最后,分别使用Aspen Plus经济分析仪®和Simapro®软件进行该过程设施的成本分析以及碳足迹排放。我的博士研究工作的另一部分专注于对产品生命周期的评估(LCA)。美国进行了温室气体(GHG)排放分析,以进行种植,收获和生产美国生产乳汁所用的普通乳汁。目标是确定碳足迹[克二氧化碳当量( (gCO 2e)/千克干饲料]在美国区域内,确定关键投入并提出减排建议。我的博士课程的最后一部分研究工作是位于美国密歇根州的一家乳制品饲料厂的LCA。主要目标是对奶制品厂的运营进行初步评估,并最终确定1公斤奶制品厂的温室气体排放量。

著录项

  • 作者

    Adom, Felix K.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Engineering Chemical.;Sustainability.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 326 p.
  • 总页数 326
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号