首页> 外文学位 >Pressure Tensor of Adsobate in Nanoporous Materials: Molecular Simulation Studies.
【24h】

Pressure Tensor of Adsobate in Nanoporous Materials: Molecular Simulation Studies.

机译:纳米多孔材料中己二酸酯的压力张量:分子模拟研究。

获取原文
获取原文并翻译 | 示例

摘要

Abundant experimental evidence suggests that adsorbates confined in nanoporous materials can exhibit high pressures, even if the systems are in equilibrium with a bulk phase of 1 bar pressure. Examples include the occurrence in the confined nanophase of high pressure chemical reactions, high pressure solid phases, high pressure effects in solid-liquid equilibria, effects on spectral properties, and the deformation of the solid materials.;With the aim of providing fundamental understanding of the high pressure effects in confined nanophases, we report Monte Carlo simulation studies of the pressure tensor of adsorbates confined in microporous materials. The pressure tensor components are calculated by both the mechanical and thermodynamic routes with the Irving-Kirkwood and Harasima definitions. We calculate the microscopic pressures as functions of spatial position. Although they cannot be measured experimentally, these local pressures contain the information of maximum value, and can be readily used to calculate various average pressures that are appropriate for different applications.;We find that the in-pore pressure is either enhanced or reduced depending on the nature of the interaction between adsorbate and wall atoms. For a well adsorbate-wall system, the in-pore tangential pressure, the pressure tensor component which is parallel to the wall, is significantly enhanced (e.g., by a factor of 104 ∼ 106). This enhancement effect arises from the strong attraction from the wall, which compresses the adsorbate phase in the direction parallel to the wall, leading to repulsive forces between the molecules. On the contrary, for a non-wetting system this enhancement is much weaker; in some cases the tangential pressure is reduced. This is because the attraction from the wall is weak (even weaker than the attraction between the adsorbate molecules), and thus the wall does not help to compress the adsorbate phase. A very large bulk pressure is needed (e.g., ∼ 4000 bar for mercury into a carbon pore) to push the adsorbate into the pore. For a wetting system with a cylindrical or spherical pore, the surface curvature strengthens the adsorbate-wall interaction, so that the tangential pressure is more enhanced than that in a slit pore. Moreover, the in-pore tangential pressure is very sensitive to small changes in the bulk pressure, indicating a way to experimentally control the in-pore pressure. Studies for silica pores show similar pressure enhancement effects, but these are smaller by about one order of magnitude due to the roughness of the pore wall surfaces, which causes a looser structure of the adsorbate molecules in contact with the wall surface. The normal pressure of adsorbate, the pressure tensor component which is perpendicular to the wall, is also enhanced (by a factor of ∼ 103), but the value can be positive or negative depending on the pore size. This large normal pressure causes deformation of the porous material: a positive normal pressure (strong repulsive force) expands the pore, while a negative normal pressure (strong attractive force) contracts the pore.
机译:大量的实验证据表明,即使系统与1 bar压力的本体相处于平衡状态,限制在纳米多孔材料中的吸附物也可能显示高压。例子包括在受限的纳米相中发生高压化学反​​应,高压固相,固液平衡中的高压效应,对光谱性质的影响以及固体材料的变形。在受限纳米相中的高压作用下,我们报道了对微孔材料中吸附物的压力张量进行蒙特卡罗模拟研究。压力张量分量是通过机械和热力学路线以及Irving-Kirkwood和Harasima定义来计算的。我们计算微观压力作为空间位置的函数。尽管这些局部压力无法通过实验测量,但它们包含最大值信息,并且可以轻松地用于计算适用于不同应用的各种平均压力。;我们发现,根据不同情况,孔内压力会有所增加或减少被吸附物和壁原子之间相互作用的性质。对于良好的吸附剂-壁系统,孔内切向压力,即平行于壁的压力张量分量,被显着地提高了(例如,提高了104-106倍)。这种增强效果来自壁的强大吸引力,它在平行于壁的方向上压缩了吸附物相,从而导致了分子之间的排斥力。相反,对于非润湿系统,这种增强作用要弱得多。在某些情况下,切向压力会降低。这是因为来自壁的吸引力弱(甚至比被吸附物分子之间的吸引力弱),因此壁不能帮助压缩被吸附物相。需要很大的体积压力(例如,汞进入碳孔的压力约为4000巴)以将被吸附物推入孔中。对于具有圆柱形或球形孔的润湿系统,表面曲率会增强被吸附物与壁的相互作用,因此切向压力要比狭缝孔中的切向压力更大。此外,孔内切向压力对整体压力的微小变化非常敏感,这表明可以通过实验控制孔内压力。对二氧化硅孔隙的研究显示出相似的压力增强效果,但是由于孔隙壁表面的粗糙度,这些效果减小了大约一个数量级,这导致吸附物分子与壁表面接触的结构变松散。垂直于壁的压力张量分量即吸附物的法向压力也得到了增强(约103倍),但该值可以取决于孔径而为正值或负值。大的法向压力会导致多孔材料变形:正向法向压力(强排斥力)会使孔扩张,而负向法向压力(强吸引力)会使孔收缩。

著录项

  • 作者

    Long, Yun.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Chemistry General.;Engineering Chemical.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号