首页> 外文学位 >Protein ion exchange chromatography: Effects of solute size, adsorbent pore structure, and protein charge on solute elution.
【24h】

Protein ion exchange chromatography: Effects of solute size, adsorbent pore structure, and protein charge on solute elution.

机译:蛋白质离子交换色谱:溶质大小,吸附剂孔结构和蛋白质电荷对溶质洗脱的影响。

获取原文
获取原文并翻译 | 示例

摘要

We are interested in the problem of relating protein elution times in ion exchange chromatography (IEC) to quantifiable features of protein and ion exchange resin structures. Developing a purification protocol can be a lengthy process of screening numerous resins and mobile phase operating conditions. Existing models of protein elution are correlative tools, requiring experimental data to determine lumped parameters that capture the system's ionic and three-dimensional structural interactions; these parameters can not be predicted a priori or readily extended to other proteins, experimental conditions, or ion exchange resins.; A macromolecular retention model (MRM) was developed to investigate solute size (hydrodynamic radius, Rh) and adsorbent structure (cylindrical pores with lognormal distribution of pore radii; Rlogmean, sigma). Analytical relationships were developed for size exclusion retention times (t0) and column phase ratios (phi), traditionally treated as fitting parameters. We can calculate retention model parameters for a given size solute once the adsorbent pore structure has been characterized. A key result of the modeling was the prediction of "solute size effects" that can complicate data analysis. Different sized solutes with the same solute-adsorbent interaction energies can elute with very different retention times; proteins eluting with the same retention time can have very different interaction energies.; We devised a novel experimental system to investigate protein charge and charge nonuniformity that eliminated the potential for solute size effects. This is the first study utilizing a series of structurally homologous proteins differing so dramatically in ionic character (net charge: -38 to +4; neutral dipole moment: 200--823 Debye). We measured isocratic retention times for seven acid proteases (porcine pepsin A1, porcine pepsin A2, bovine pepsin, chymosin A, chymosin B, endothiapepsin, mucoropepsin) as a function of mobile phase pH (4--5.5) and ionic strength (0--1 M sodium chloride) on three related size exclusion, cation exchange, and anion exchange resins (Tosoh Biosep HW65S, SP, SuperQ). We concluded that charge alone, whether net charge or regions of high local charge density determined via protein crystal structure analysis, was incapable of explaining the acid protease retention data; non-ionic interactions must be considered.
机译:我们对将离子交换色谱(IEC)中蛋白质洗脱时间与蛋白质和离子交换树脂结构的定量特征相关的问题感兴趣。制定纯化方案可能是筛选众多树脂和流动相操作条件的漫长过程。现有的蛋白质洗脱模型是相关工具,需要实验数据来确定可捕获系统离子和三维结构相互作用的集总参数。这些参数不能事先预测,也不能轻易扩展到其他蛋白质,实验条件或离子交换树脂。开发了大分子保留模型(MRM),以研究溶质的大小(流体动力学半径,Rh)和吸附剂结构(具有半径对数正态分布的圆柱孔; Rlogmean,sigma)。建立了尺寸排阻保留时间(t0)和色谱柱相比(phi)的分析关系,传统上将其作为拟合参数。一旦表征了吸附剂孔结构,就可以计算给定尺寸溶质的保留模型参数。建模的一个关键结果是预测“绝对尺寸效应”,这可能会使数据分析复杂化。具有相同的溶质-吸附剂相互作用能的不同大小的溶质可以在截留时间上有很大差异。以相同保留时间洗脱的蛋白质可能具有非常不同的相互作用能。我们设计了一个新颖的实验系统来研究蛋白质电荷和电荷不均,消除了溶质尺寸效应的可能性。这是第一项利用一系列结构同源蛋白质的离子特性差异极大的研究(净电荷:-38至+4;中性偶极矩:200--823德拜)。我们根据流动相pH(4--5.5)和离子强度(0- -1 M氯化钠)在三种相关的尺寸排阻,阳离子交换和阴离子交换树脂上(Tosoh Biosep HW65S,SP,SuperQ)。我们得出的结论是,单独的电荷,无论是净电荷还是通过蛋白质晶体结构分析确定的高局部电荷密度区域,都无法解释酸性蛋白酶的保留数据。必须考虑非离子相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号