首页> 外文学位 >Task-level models for image-stabilization behaviors in animals.
【24h】

Task-level models for image-stabilization behaviors in animals.

机译:用于动物图像稳定行为的任务级模型。

获取原文
获取原文并翻译 | 示例

摘要

This research addresses a fundamental question in biology and neuroscience: how do animals process sensory information for the control of locomotor behaviors? Behaviors can be described as a sensorimotor loop: sensing (sensori-) governs action (-motor), action changes the environment, and these changes are perceived via sensing. Animal behavior arises from a concert of sensory, computational, and mechanical systems. Often, these mechanisms are studied independently (and often isolated from the context of the behavior) and the behavioral model is constructed from knowledge of the constituents, a bottom-up synthesis. Complementary to this approach, we model behavior at the level of the sensorimotor loop (the task-level) and subsequently generate hypotheses as to the mechanistic constituents. These top-down models serve to constrain permissible mechanisms and identify necessary neural computations.;We design an assay of experiments and frequency-domain analyses to identify task-level behavioral models, specifically for image-stabilization behaviors. Image-stabilization describes a broad class of behaviors in which animals modulate movement to fixate a sensory signal. In this dissertation, we study analogous behaviors in two species: refuge-tracking in weakly electric knifefish and stripe-fixation in fruit flies.;Glass knifefish swim forward and backward to maintain their position relative to a moving refuge. Fish were recorded performing refuge-tracking behavior for sinusoidal (predictable) and sum-of-sines (pseudo-random) refuge trajectories. System identification reveals a notable nonlinearity in the behavior; the frequency response functions (FRFs) generated from predictable and pseudo-random experiments are categorically different. The data support the hypothesis that fish generate an internal dynamical model of the stimulus motion, hence enabling improved tracking of predictable trajectories (relative to unpredictable ones) despite similar or reduced motor cost.;Fruit flies adeptly coordinate flight maneuvers to seek, avoid, or otherwise interact with salient objects in their environment. In the laboratory, tethered flies modulate yaw torque to steer towards a dark vertical visual stimulus. This stripe-fixation behavior is robust and repeatable; in series of experiments, flies stabilize moving stripes oscillating over a range of frequencies. We parameterize this FRF description to hypothesize a Proportional-Integral-Derivative (PID) control model for the fixation behavior. We demonstrate that our hypothesized PID model provides a parsimonious explanation for several previously reported phenomena.
机译:这项研究解决了生物学和神经科学中的一个基本问题:动物如何处理感觉信息来控制运动行为?行为可以描述为感觉运动回路:感测(sensori-)控制动作(-motor),动作改变了环境,这些变化通过感测来感知。动物的行为源于一系列感官,计算和机械系统。通常,这些机制是独立研究的(并且通常与行为的上下文隔离),并且行为模型是根据构成要素的知识(自下而上的综合)构建的。作为这种方法的补充,我们在感觉运动循环级别(任务级别)对行为进行建模,并随后生成关于机械成分的假设。这些自上而下的模型用于约束可允许的机制并识别必要的神经计算。我们设计了实验分析和频域分析,以识别任务级行为模型,尤其是图像稳定行为。图像稳定描述了多种行为,其中动物通过调节运动来固定感觉信号。本文研究了两个物种的相似行为:弱电刀鱼的避难所追踪和果蝇的条带固定。玻璃刀鱼前后游动以保持其相对于移动避难所的位置。记录了鱼类对正弦(可预测)和正弦和(伪随机)避难轨迹的避难追踪行为。系统识别揭示了行为的显着非线性。从可预测和伪随机实验生成的频率响应函数(FRF)绝对不同。数据支持以下假设,即鱼会生成刺激运动的内部动力学模型,因此尽管运动成本相似或降低,但仍可以改善对可预测轨迹(相对于不可预测轨迹)的跟踪。;果蝇善于协调飞行机动以寻求,避免或否则会与环境中的显着物体发生相互作用。在实验室中,束缚的苍蝇调节偏航扭矩以转向黑暗的垂直视觉刺激。这种条带固定行为是可靠且可重复的。在一系列实验中,苍蝇稳定了在一定频率范围内振荡的运动条纹。我们参数化此FRF描述,以为固定行为假设一个比例积分-微分(PID)控制模型。我们证明了我们假设的PID模型为先前报道的几种现象提供了简化的解释。

著录项

  • 作者

    Roth, Eatai.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Neuroscience.;Applied Mathematics.;Psychology Behavioral Sciences.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号