首页> 外文学位 >A coupled continuum-discrete fluid-particle model for granular soil liquefaction.
【24h】

A coupled continuum-discrete fluid-particle model for granular soil liquefaction.

机译:粒状土壤液化的连续离散流体耦合模型。

获取原文
获取原文并翻译 | 示例

摘要

Saturated granular soils consist of mixtures of mineral particles, forming a porous matrix, and fluid (usually water) filling the pores. These soils exhibit a broad range of response patterns depending on confining pressure, level of deformation and pore fluid pressures. Large pore fluid pressures, typically caused in the field by either static groundwater condition or vibrations due to earthquakes, lead to stiffness degradation and possibly liquefaction. Liquefied soils are marked by a transition from a solid condition to a state with at least some fluid-like properties and characteristics. The mechanisms of this transition as well as the characteristics of liquefied soils are still not fully understood, especially at the micro-mechanical level. A continuum-discrete hydromechanical model was utilized in this study to analyze the coupled meso-scale pore fluid flow and micro-scale solid phase deformation of saturated granular soils. The fluid motion was idealized using averaged Navier-Stokes equations, and the discrete element method was employed to model the solid particles. The fluid-particle interactions were provided by established semi-empirical relationships. The proposed approach was validated using published experimental results of pore fluid seepage induced by hydraulic gradients through the skeleton of granular soils. Numerical simulations were conducted to analyze the impact of critical and over-critical upward pore water flow on three-dimensional sandy soil deposits within rigid containers of various heights. The conducted simulations provided valuable information on a number of salient micro-scale mechanisms of granular media liquefaction under quicksand conditions. Computer simulations were also performed to assess the liquefaction of granular deposits due to a dynamic earthquake-type base excitation. Periodic boundaries and a high gravity field were used in order to reduce the number of particles, required to achieve a realistic simulation, to a computationally manageable size. These simulations confirmed the macroscopic aspects of liquefaction as observed in experimental physical modeling and case histories of granular soil liquefaction and provided a valuable insight into the microscopic characteristics of soil liquefaction. The proposed hydromechanical model was shown to be an effective tool to investigate the response mechanisms of saturated granular soils when subjected to extreme loading conditions.
机译:饱和的粒状土壤由矿物质颗粒(形成多孔基质)和填充孔隙的流体(通常为水)的混合物组成。这些土壤表现出范围广泛的响应模式,具体取决于围压,变形水平和孔隙流体压力。大孔隙流体压力通常是由静态地下水条件或地震引起的振动在田间造成的,从而导致刚度下降甚至液化。液化土壤的特征是从固态到至少具有某些类似于流体的特性和特征的状态。这种转变的机制以及液化土壤的特性仍未得到充分理解,尤其是在微机械层面。本研究采用连续离散流体力学模型来分析饱和粒状土的中尺度孔隙水流和微观尺度固相耦合。使用平均的Navier-Stokes方程使流体运动理想化,并采用离散元方法对固体颗粒进行建模。通过建立的半经验关系提供了流体-颗粒之间的相互作用。利用已发表的由水力梯度穿过颗粒状土壤骨架引起的孔隙流体渗漏的实验结果验证了该方法的有效性。进行了数值模拟,以分析临界和超临界向上孔隙水流对不同高度的刚性容器内三维砂土沉积的影响。进行的模拟提供了有关流沙条件下颗粒状介质液化的多种显着微观机理的有价值的信息。还进行了计算机模拟,以评估由于动态地震型基础激发而引起的颗粒状沉积物的液化。为了将实现逼真的模拟所需的粒子数量减少到可计算的大小,使用了周期性边界和高重力场。这些模拟证实了液化的宏观方面,如在实验物理模型和粒状土壤液化的案例历史中观察到的,并为了解土壤液化的微观特性提供了宝贵的见识。所提出的流体力学模型被证明是研究饱和粒状土在极端载荷条件下的响应机制的有效工具。

著录项

  • 作者

    El Shamy, Usama.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号