首页> 外文学位 >Degradations and improvements in PEM fuel cell materials: A computational study.
【24h】

Degradations and improvements in PEM fuel cell materials: A computational study.

机译:PEM燃料电池材料的降解和改进:一项计算研究。

获取原文
获取原文并翻译 | 示例

摘要

The advantages of Proton Exchange Membrane (PEM) fuel cells include lower operating temperature than other fuel cells and size small enough to fit into a car. Improving the cost and durability of PEM fuel cell materials is a hot topic of research today.;The Nafion membrane and cathode catalysts are two areas where PEM fuel cells have issues of cost, durability, and efficiency. In order to improve these materials, researchers need a better understanding of the detailed mechanisms for basic operation and degradation. Computational quantum mechanics has improved in recent years to the point where it can provide accurate potential energy maps of reactions that are difficult to determine by laboratory experiments alone. With the basic understanding of mechanisms, experimentalists can make educated predictions of ways to improve fuel cell materials.;Experimental studies suggest that Nafion degradation is caused by generation of trace radical species (such as OH•, H• ) when in the presence of H2, O2, and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H2 (or H+) and O 2 in the presence of the Pt catalyst. We find that OH• can be generated in trace amounts on the Pt surface from HOOH and OOH ad. Next, we look at various ways in which the OH• can attack the Nafion sidechains or endgroups on the backbone.;Researchers are looking for ways to replace the Pt cathode catalyst, due to the preciousness of Pt and the low efficiency of the oxygen reduction reaction (ORR) on Pt, among other things. Alloying Pt with non-precious Co greatly increases the ORR efficiency. However, Pt3Co was reported to not withstand long-cycle testing due to the migration of Co metals onto the catalyst surface and leaching of Co into the electrolyte. To overcome these challenges, we first study Pt3Co to find out what makes these alloys so special in improving fuel cell efficiency, as well as what causes degradation to occur. Then, we apply the principles we learned in proposing improved fuel cell alloy catalysts.
机译:质子交换膜(PEM)燃料电池的优点包括比其他燃料电池更低的工作温度,并且尺寸小到足以装进汽车。提高PEM燃料电池材料的成本和耐用性是当今研究的热点。Nafion膜和阴极催化剂是PEM燃料电池存在成本,耐用性和效率问题的两个领域。为了改进这些材料,研究人员需要更好地了解基本操作和降解的详细机制。近年来,计算量子力学得到了改进,可以提供准确的反应势能图,而仅通过实验室实验难以确定。通过对机理的基本了解,实验人员可以对改进燃料电池材料的方法进行有根据的预测。;实验研究表明,Nafion的降解是由于存在H2时产生痕量自由基物质(例如OH•,H•)引起的。 ,O2和Pt。我们使用密度泛函理论(DFT)来构造各种可能的反应的势能表面,这些反应涉及在Pt催化剂存在下Nafion暴露于H2(或H +)和O 2时可能形成的中间体。我们发现OH•可以从HOOH和OOH ad的痕量铂表面生成。接下来,我们研究OH•可以攻击骨架上Nafion侧链或端基的各种方法。由于Pt的珍贵性和氧还原效率低,研究人员正在寻找替代Pt阴极催化剂的方法。对Pt的反应(ORR)等。将Pt与非贵金属Co合金化可大大提高ORR效率。但是,据报道,由于Co金属迁移到催化剂表面以及Co浸出到电解质中,Pt3Co不能经受长时间的测试。为了克服这些挑战,我们首先研究Pt3Co,以找出是什么使这些合金在提高燃料电池效率方面如此特别,以及导致降解的原因。然后,我们运用在提出改进的燃料电池合金催化剂方面学到的原理。

著录项

  • 作者

    Yu, Ted.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号