首页> 外文学位 >Iterative Gain Enhancement in a Power-Efficient Algorithmic ADC.
【24h】

Iterative Gain Enhancement in a Power-Efficient Algorithmic ADC.

机译:高效算法ADC中的迭代增益增强。

获取原文
获取原文并翻译 | 示例

摘要

Switched-capacitor (SC) circuits are commonly used in applications such as data conversion and filtering. With low supply voltages and low intrinsic transistor gain in modern CMOS processes, building high-gain op amps that are needed in accurate switched-capacitor circuits is difficult. As technology becomes more advanced, fT increases, which makes op amps faster. However, more advanced processes also give reduced intrinsic transistor gain, and this trend increases errors in feedback circuits. A number of switched-capacitor gain-enhancement techniques exist, which increase the accuracy of op-amp-based circuits by storing the state of the circuit on a capacitor and using the voltage on this capacitor during extra clock phases to correct the output. However, previous SC gain-enhancement techniques achieve limited effective gain.;This dissertation presents iterative gain enhancement, a technique that uses multiple clock phases to increase the effective op-amp gain in a switched-capacitor circuit to more than can be achieved with a single application of gain enhancement. Using an op amp that gives only 30-dB loop gain in a feedback circuit without gain enhancement, application of the iterative gain enhancement technique boosts the loop gain to 81 dB.;A prototype algorithmic analog-to-digital converter (ADC) was designed, fabricated and tested to demonstrate iterative gain enhancement. The algorithmic ADC uses a capacitor sharing and scaling technique, which saves power and reduces errors. The ADC has an active area of 0.75 mm2 in 0.25-μm CMOS and dissipates 16.2 mW of power. Iterative gain enhancement increases SNDR from 44.6 dB to 78.5 dB and SFDR from 45.9 dB to 96.2 dB. Reducing the number of gain-enhancement iterations for the LSBs increases the conversion rate from 3.57 MS/s to 4.65 MS/s with only minor performance degradation.
机译:开关电容器(SC)电路通常用于诸如数据转换和过滤之类的应用中。由于现代CMOS工艺中的低电源电压和低本征晶体管增益,很难构建精确的开关电容器电路所需的高增益运算放大器。随着技术的进步,fT增加,这使运算放大器更快。但是,更先进的工艺也会降低本征晶体管的增益,这种趋势会增加反馈电路中的误差。存在许多开关电容器增益增强技术,通过将电路的状态存储在电容器上并在额外的时钟相位期间使用该电容器上的电压来校正输出,从而提高了基于运算放大器的电路的精度。然而,以前的SC增益增强技术只能实现有限的有效增益。本论文提出了迭代增益增强技术,该技术使用多个时钟相位来将开关电容器电路中的有效运放增益提高到超过使用A / S增益所能达到的水平。增益增强的单一应用。使用运算放大器在反馈电路中仅提供30dB的环路增益而不进行增益增强,则应用迭代增益增强技术可将环路增益提升至81dB 。;设计了原型算法模数转换器(ADC) ,经过制造和测试以证明迭代增益增强。算法ADC使用电容器共享和缩放技术,从而节省了功率并减少了误差。 ADC在0.25μmCMOS中的有效面积为0.75 mm2,功耗为16.2 mW。迭代增益增强将SNDR从44.6 dB增加到78.5 dB,将SFDR从45.9 dB增加到96.2 dB。减少LSB的增益增强迭代次数可以将转换速率从3.57 MS / s提高到4.65 MS / s,而性能只会稍有下降。

著录项

  • 作者

    Monk, Timothy Adam.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号