首页> 外文学位 >Etude d'un dephaseur large bande en technologie de guide d'ondes integre au substrat.
【24h】

Etude d'un dephaseur large bande en technologie de guide d'ondes integre au substrat.

机译:对集成到基板中的波导技术中的宽带移相器的研究。

获取原文
获取原文并翻译 | 示例

摘要

Electronic is an emerging field since the 60's. Indeed, from the day that the first transistor has been manufactured, a little bit before the 50's, the complexity of electronic circuits didn't stop increasing. Nevertheless, there are others fields than integrated circuits that become more complex in this area. The "PCB" or "Printed Circuit Board", the component that supports the ICs, is as important as the integrated circuits during the fabrication process of an electronic system. It interconnects the integrated circuits together but also has to process a great part of the microwave signals (filters, phase shifters, antennas).;When a large quality factor is required, it is not possible to use transmission lines. Waveguides have to be used. These guides are usually very efficient but are very expensive and difficult to integrate. A new class of waveguides, the Substrate Integrated Waveguides (SIW), was proposed more than ten years ago. As seen in their name, these guides have the advantage to be integrated directly into the substrate, or into the PCBs. This technology reduces the production costs and the weight. At the same time, it increases the components density while providing an excellent quality factor. It is then interesting to use a lot of SIW in the integration of microwave systems.;This document presents the complete analysis of a new kind of broadband phase shifters designed with the SIW. The proposed method to realize the phase shift consists of a dielectric slab placed in the middle of the structure. Thus, by comparing the phase shift of this waveguide with another having the same dimensions but without this perturbation, a phase difference can be observed. The objective of this project is to develop the required tools to study different phase shifter configurations. The final goal is to study some forms of slot to find the optimal which gives the best results in term of insertion loss and phase shift.;To simplify the theoretical analysis, a SIW can be replaced by an equivalent rectangular waveguide. This model will be applied in the whole project. In chapter 2, a method to evaluate the propagation constant of a rectangular waveguide with a dielectric slab in the middle is developed. From this propagation constant, the complete electric and magnetic field are calculated.;In chapter 3, the mode matching theory is used to calculate the S matrix for a waveguide having a slab discontinuity. A cascade of matrices is then applied to calculate the global S matrix of several discontinuities cascaded. This chapter covers all the tools required to study the phase shifters discussed in the next chapters.;Afterwards, we studied several topologies of phase shifters. The Tchebychev polynomial is sometimes chosen to solve this kind of problems. So, a mathematical development allowed us to prove that it is not possible to apply the small reflection theory to the conception of a wideband phase shifter.;The simplest method to have a phase shift in a structure like this is to drill circular holes in the middle. To obtain a higher phase shift, it is also possible to cascade several holes. Such a phase shifter was manufactured for a phase shift of 42° and the results were similar to those from the simulations. Indeed, both results have an oscillation up to 55° at the beginning of the band, but stabilized afterwards to 41+/-2.5° between 30 and 40 GHz.;To find the phase shifter providing the lower return loss, we studied others topologies. We were interested in phase shifter having a continuous slot. The topology that we first studied is the rectangular slot. Then we studied several others topologies such as the triangle, the exponential form, and the optimal solution, the Hecken distribution. In order to calculate the S matrix of these structures, we have discretized the slot and applied the mode matching theory. The results obtained match very well with simulations results in HFSS. Of course, all these results do not take into account any losses. The Hecken function gives the optimal results with a return loss lower than -60 dB between 30.5 and 40 GHz (the Ka band is used) and lower than -23.7 dB over the whole band. For the Ka band, the phase shift is 130+/-3°.;Then we manufactured and tested some circuits. Thereby, the rectangular, the triangle and the Hecken phase shifters have been measures. Between 30.5 and 40 GHz, the Hecken phase shifter has return loss less than -14 dB and a phase shift of 175.4+/-5.6°. The phase shift difference of 45° with the theoretical value come from some errors in the manufacture. Furthermore, all the circuits have an increase of their phase shift compared to the predicted value.
机译:自60年代以来,电子是一个新兴领域。实际上,从第一个晶体管被制造出来的那一天开始,就是在50年代之前,电子电路的复杂性并没有停止增加。然而,除了集成电路之外,还有其他领域在这一领域变得更加复杂。在电子系统的制造过程中,支持IC的组件“ PCB”或“印刷电路板”与集成电路一样重要。它将集成电路互连在一起,但还必须处理大部分微波信号(滤波器,移相器,天线)。;当需要大质量因数时,将无法使用传输线。必须使用波导。这些指南通常非常有效,但是非常昂贵且难以集成。十多年前提出了一种新型的波导,即衬底集成波导(SIW)。顾名思义,这些指南具有直接集成到基板或PCB中的优势。该技术降低了生产成本和重量。同时,它提高了组件密度,同时提供了出色的品质因数。因此,在微波系统的集成中使用大量的SIW很有意思。该文档介绍了使用SIW设计的新型宽带移相器的完整分析。提出的实现相移的方法由放置在结构中间的介电平板组成。因此,通过将该波导与具有相同尺寸但没有这种扰动的另一波导进行相移比较,可以观察到相位差。该项目的目的是开发必要的工具来研究不同的移相器配置。最终目标是研究某些形式的缝隙,以找到在插入损耗和相移方面能提供最佳结果的最佳缝隙。为了简化理论分析,可用等效的矩形波导代替SIW。该模型将应用于整个项目。在第二章中,提出了一种评估中间带有电介质平板的矩形波导的传播常数的方法。根据该传播常数,计算出完整的电场和磁场。在第三章中,使用模式匹配理论来计算具有不连续平板的波导的S矩阵。然后应用级联矩阵来计算级联的几个不连续点的全局S矩阵。本章涵盖研究下一章讨论的移相器所需的所有工具。随后,我们研究了移相器的几种拓扑。有时选择Tchebychev多项式来解决此类问题。因此,数学上的发展使我们证明不可能将小反射理论应用于宽带移相器的概念。;在这样的结构中进行相移的最简单方法是在中间。为了获得更高的相移,还可以级联多个孔。制造这样的移相器以实现42°的相移,其结果与仿真结果相似。的确,两个结果在频带开始时都有高达55°的振荡,但随后在30至40 GHz之间稳定到41 +/- 2.5°.;要找到提供较低回波损耗的移相器,我们研究了其他拓扑。我们对具有连续插槽的移相器感兴趣。我们首先研究的拓扑是矩形槽。然后,我们研究了其他几种拓扑,例如三角形,指数形式以及最佳解Hecken分布。为了计算这些结构的S矩阵,我们离散化了缝隙并应用了模式匹配理论。获得的结果与HFSS中的模拟结果非常吻合。当然,所有这些结果都没有考虑任何损失。 Hecken函数可提供最佳结果,在30.5至40 GHz(使用Ka频段)之间的回波损耗低于-60 dB,在整个频段内回波损耗低于-23.7 dB。对于Ka频段,相移为130 +/- 3°。然后,我们制造并测试了一些电路。因此,矩形,三角形和Hecken相移器已成为度量。在30.5至40 GHz之间,Hecken移相器的回波损耗小于-14 dB,相移为175.4 +/- 5.6°。与理论值相差45°的原因是制造过程中的一些误差。此外,与预测值相比,所有电路的相移都有所增加。

著录项

  • 作者

    Boudreau, Israel.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.Sc.A.
  • 年度 2012
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号