首页> 外文学位 >Gas transport, sorption, and mechanical response of fractured coal.
【24h】

Gas transport, sorption, and mechanical response of fractured coal.

机译:压裂煤的气体传输,吸附和机械响应。

获取原文
获取原文并翻译 | 示例

摘要

Chapter I reports laboratory experiments that investigate the permeability evolution of an anthracite coal as a function of applied stress and pore pressure at room temperature as an analog to other coal types. Experiments are conducted on 2.5 cm diameter, 2.5-5 cm long cylindrical samples at confining stresses of 6 to 12 MPa. Permeability and sorption characteristics are measured by pulse transient methods, together with axial and volumetric strains for both inert (helium (He)) and strongly adsorbing (methane (CH4) and carbon dioxide (CO2)) gases. To explore the interaction of swelling and fracture geometry the evolution of mechanical and transport characteristics for three separate geometries are measured -- sample A containing multiple small embedded fractures, sample B containing a single longitudinal through-going fracture and sample C containing a single radial through-going fracture. Experiments are conducted at constant total stress and with varied pore pressure -- increases in pore pressure represent concomitant (but not necessarily equivalent) decreases in effective stress.;Chapters II presents a mechanistic model to represent the evolution of permeability in dual permeability dual stiffness (DPDS) sorbing media such as coalbeds and shales. This model accommodates key competing processes of poromechanical dilation and sorption-induced swelling. The significant difference in stiffness between fracture and matrix transforms the composite system from globally unconstrained to locally constrained by the development of a "stiff shell" that envelops the perimeter of an representative elementary volume (REV) containing a fracture. It is this transformation that results in swelling-induced permeability-reduction at low (sorbing) gas pressures and self-consistently allows competitive dilation of the fracture as gas pressures are increased. Net dilation is shown to require a mismatch in the Biot coefficients of fracture and matrix with the fracture coefficient exceeding that for the matrix -- a condition that is logically met.;Chapter III reports measurements of deformation, strength and permeability evolution during triaxial compression of initially intact bituminous coals. Experiments are conducted on coal (Gilson seam, Utah) at effective confining stresses of 0.75 to 3 MPa and pore pressure of 0.5MPa. Permeability is continuously measured by the constant pressure differential method, together with axial and volumetric strains for both water (H2O) and strongly adsorbing carbon dioxide (CO2) gas. The coal is an initially elastic, brittle-plastic material with a strain-weakening behavior. Strength and Young's modulus increase with increasing confining stress and permeability is hysteretic in the initial reversible deformation regime. As deviatoric stress and strain increase, permeability first decreases as pre-existing cleats close and then increases as new vertical dilatant microcracks are generated. Post-peak strength the permeability suddenly increases by 3-4 orders-of-magnitude.;Chapter IV presents laboratory experiments to investigate the role of gas desorption, stress level and loading rate on the mechanical behavior of methane infiltrated coal. Two suites of experiments are carried out. The first suite of experiments is conducted on bituminous coal (Lower Kittaning Seam, West Virginia) at confining stress of 2 MPa and methane pore pressure in fracture of 1 MPa to examine the role of gas desorption. The second suite of experiments is conducted on bituminous coal (Upper B Seam, Colorado) at confining stresses of 2 and 4 MPa, with pore pressures of 1 and 3 MPa, under underpressured and undrained condition with three different loading rates to study the role of stress level and loading rate.;Chapter V reports laboratory experiments to investigate the rapid decompression and desorption induced energetic failure in bituminous coal using a shock tube apparatus. By comparing experimental results on coal and those on fragmenting volcanic conduits it is speculated that the characteristics of fracture network (e.g., aperture, spacing, orientation and stiffness) and gas desorption play an important role in this dynamic event as coal is a dual porosity dual permeability dual stiffness sorbing medium. Then a shock wave model is applied to analyze how the fragmentation speed and the ejection velocity of gas-particle mixture change with a variety of parameters, (e.g., coal properties, Langmuir constants). This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts. (Abstract shortened by UMI.)
机译:第一章报告了一些实验室实验,这些实验研究了无烟煤在室温下的渗透性演变与所施加的应力和孔隙压力的函数关系,与其他类型的煤类似。对直径为2.5厘米,长2.5-5厘米的圆柱形样品在6至12 MPa的限制应力下进行实验。渗透率和吸附特性通过脉冲瞬变方法以及惰性气体(氦气(He))和强吸附性气体(甲烷(CH4)和二氧化碳(CO2))的轴向应变和体积应变进行测量。为了探究膨胀和裂缝几何形状之间的相互作用,测量了三种不同几何形状的力学和传输特性的演变-样品A包含多个小埋入裂缝,样品B包含一个纵向贯穿裂缝,样品C包含一个径向贯穿孔骨折。实验是在恒定总应力和变化的孔隙压力下进行的-孔隙压力的增加表示有效应力的降低(但不一定相等);第二章提出了一种力学模型来表示双重渗透率双重刚度中渗透率的演变( DPDS)吸附介质,例如煤层和页岩。该模型适应了poromechanical膨胀和吸附引起的肿胀的主要竞争过程。断裂与基体之间的刚度上的显着差异将复合系统从整体不受约束的状态转变为局部约束,形成了“刚性壳体”,该壳体包围了包含断裂的代表性基本体积(REV)的周长。正是这种转变导致在低(吸附)气压下膨胀引起的渗透率降低,并且随着气压的升高,自洽地允许裂缝竞争性扩张。净膨胀被证明要求断裂和基体的比奥系数不匹配,且断裂系数超过基体的断裂系数-这在逻辑上是可以满足的条件;第三章报告了三轴压缩过程中变形,强度和渗透率演变的测量结果最初是完整的烟煤。在煤(Gilson煤层,犹他州)上进行了试验,有效围压为0.75至3 MPa,孔隙压力为0.5 MPa。通过恒定压差法连续测量渗透率,同时测量水(H2O)和强吸附二氧化碳(CO2)气体的轴向应变和体积应变。煤是一种最初的弹性,易碎的塑性材料,具有应变减弱的特性。强度和杨氏模量随围压的增加而增加,而渗透率在初始可逆变形状态下具有滞后性。随着偏应力和应变的增加,渗透率首先随着既有夹板的闭合而减小,然后随着新的垂直膨胀微裂纹的产生而增大。峰后强度,渗透率突然增加3-4个数量级。第四章介绍了实验室实验,研究了气体解吸,应力水平和加载速率对甲烷渗透煤力学行为的作用。进行了两套实验。第一组实验是在烟煤(西弗吉尼亚州的Lower Kittaning煤层)上进行的,围压为2 MPa,裂缝中的甲烷孔隙压力为1 MPa,以检验瓦斯解吸的作用。第二组实验是在负压和不排水条件下,以三种不同的加载速率,在2和4 MPa的围压,1和3 MPa的孔隙压力下,在烟煤(科罗拉多州上B煤层)上进行的,以研究煤的作用。第五章报道了实验室实验,以研究使用冲击管装置对烟煤中的快速减压和解吸引起的能量破坏。通过比较煤和破碎火山管上的实验结果,可以推测,裂隙网络的特征(例如,孔隙,间距,取向和刚度)和气体脱附在这种动态事件中起着重要作用,因为煤是双重孔隙双重作用。渗透性双重刚度吸附介质。然后应用冲击波模型分析气体-颗粒混合物的碎裂速度和喷射速度如何随各种参数(例如煤性质,朗缪尔常数)变化。这项研究对于理解地下煤矿的高能破坏过程(如瓦斯突出)具有重要意义。 (摘要由UMI缩短。)

著录项

  • 作者

    Wang, Shugang.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Applied Mechanics.;Engineering Mining.;Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号