首页> 外文学位 >Gas transport, sorption and fracturing in shale.
【24h】

Gas transport, sorption and fracturing in shale.

机译:页岩中的气体输送,吸附和压裂。

获取原文
获取原文并翻译 | 示例

摘要

Shale gas has become an increasingly important source of natural gas (CH4) in the United States over the last decade. As an unconventional resource, various stimulation techniques including hydraulic fracturing and enhanced gas recovery have been proposed to maximize production. This study examines some of these techniques combining experiments and models. Part I of this dissertation (Chapter 1) examines the use of CO 2 for enhanced shale gas recovery (CO2-ESGR) using a dual porosity dual permeability model to better understand its feasibility and effectiveness. Part II (Chapter 2) explores the use of gas stimulants for hydraulic fracturing to assess the form and behavior of fractures in shale driven by different gas compositions and states. Part III (Chapter 3) examines the evolution of permeability in artificially propped fractures in Green River Shale for native CH4 contrasted against sorbing CO2, slightly sorbing N2 and non- sorbing He, specifically to examine the deleterious influence of proppant embedment. Together, the findings of these experiments and analyses aid in the understanding of proppant embedment and fracture diagenesis in shales. Finally, part IV (Chapter 4) examines the role of stress reorienation in aiding productivity increases in the refracturing of previoslu fractured wells in shales to determine the optimal timing of refracturing as well as in quantifying its potential improvement.;Chapter 1 explores the roles of important coupled phenomena activated during gas substitution especially vigorous feedbacks between sorptive behavior and permeability evolution. Permeability and porosity evolution models developed for sorptive fractured coal are adapted to the component characteristics of gas shales.;In Chapter 2, fracturing is completed on cylindrical samples containing a single blind axial borehole under simple triaxial conditions with confining pressure ranging from 10~25MPa and axial stress ranging from 0-35MPa (sigma1>sigma2 = sigma3). Results show that: 1) under the same stress conditions, CO2 returns the highest breakdown pressure, followed by N2, and with H2O exhibiting the lowest breakdown pressure; 2) CO2 fracturing, compared to other fracturing fluids, creates nominally the most complex fracturing patterns as well as the roughest fracture surface and with the greatest apparent local damage followed by H2O and then N2; 3) under conditions of constant injection rate, the CO2 pressure build-up record exhibits condensation between ~5-7MPa and transits from gas to liquid through a mixed-phase region rather than directly to liquid as for H2O and N2 which do not; 4) there is a positive correlation between minimum principal stress and breakdown pressure for failure both by transverse fracturing (□ 3axial) and by longitudinal fracturing (□ 3radial) for each fracturing fluid with CO 2 having the highest correlation coefficient/slope and lowest for H2O . We explain these results in terms of a mechanistic understanding of breakdown, and through correlations with the specific properties of the stimulating fluids.;In Chapter 3, experiments are conducted on 1inch diameter, 2-inch-long split cylindrical samples sandwiched with proppant at a constant confining stress of 20 MPa and with varied pore pressure -- increases in pore pressure represent concomitant decreases in effective stress. Permeability and sorption characteristics are measured by pulse transient methods. To explore the effect of swelling and embedment on fracture surface geometry, we measure the evolution of transport characteristics for different proppant geometries (single layer vs. multi-layer), gas saturation, and sample variance. In order to simulate both production and enhanced gas recovery saturation, and sample variance. In order to simulate both production and enhanced gas recovery.
机译:在过去的十年中,页岩气已成为美国越来越重要的天然气(CH4)来源。作为非常规资源,已经提出了包括水力压裂和提高的气体采收率在内的各种增产技术以最大化产量。这项研究研究了结合实验和模型的其中一些技术。本论文的第一部分(第1章)研究了如何使用CO 2来提高页岩气的采收率(CO 2 -ESGR),该方法使用了双孔双渗模型来更好地理解其可行性和有效性。第二部分(第2章)探讨了使用气体刺激剂进行水力压裂,以评估由不同气体组成和状态驱动的页岩裂缝的形式和行为。第三部分(第3章)研究了绿河页岩中天然CH4与人工吸附的CO2,轻度吸附的N2和不吸附的He的人工支撑裂缝渗透率的演变,特别是研究了支撑剂包埋的有害影响。总之,这些实验和分析的结果有助于理解页岩中的支撑剂埋藏和裂缝成岩作用。最后,第四部分(第4章)研究了应力再定向在页岩中previoslu压裂井压裂中帮助提高生产率的作用,以确定最佳的压裂时间以及量化其潜在的改善作用;第1章探讨了压裂的作用。在气体替代过程中激活的重要耦合现象,特别是吸附行为和渗透性演化之间的强烈反馈。针对吸附性裂隙煤开发的渗透率和孔隙度演化模型适合气页岩的组分特征。第二章,在简单的三轴条件下,在一个单一轴向盲孔的圆柱形样品上完成了压裂,围压范围为10〜25MPa,轴向应力范围为0-35MPa(sigma1> sigma2 = sigma3)。结果表明:1)在相同的应力条件下,CO2的击穿压力最高,其次为N2,H2O的击穿压力最低。 2)与其他压裂液相比,CO2压裂名义上产生最复杂的压裂模式以及最粗糙的压裂表面,并具有最大的表观局部破坏,其次是H2O和N2; 3)在恒定注入速度的条件下,CO2压力累积记录显示在〜5-7MPa之间发生冷凝,并且从气体通过混合相区域向液体转变,而不是像H2O和N2那样直接转变为液体; 4)对于每种压裂液,相关系数/斜率最高且最低的CO 2压裂液,通过横向压裂(3轴)和纵向压裂(3径向)的最小主应力与破坏压力之间存在正相关。用于H2O。我们从对破裂的机械理解以及与刺激性液体的特定性质的相关性的角度来解释这些结果。在第3章中,对直径为1英寸,长度为2英寸的剖分圆柱状样品与支撑剂夹在中间进行了实验。恒定的20 MPa围压和不同的孔隙压力-孔隙压力的增加表示有效应力的降低。渗透性和吸附特性通过脉冲瞬变方法测量。为了探讨膨胀和包埋对裂缝表面几何形状的影响,我们测量了不同支撑剂几何形状(单层与多层),气体饱和度和样品方差的输运特征的演变。为了模拟产量和提高的气体回收饱和度,以及样品方差。为了模拟生产和提高气体回收率。

著录项

  • 作者

    Li, Xiang.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Petroleum engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号