首页> 外文学位 >Dynamic contrast in optical imaging using stimuli-responsive agents.
【24h】

Dynamic contrast in optical imaging using stimuli-responsive agents.

机译:使用刺激响应剂的光学成像中的动态对比度。

获取原文
获取原文并翻译 | 示例

摘要

Optical imaging has become an indispensable tool for cancer diagnostics and treatment. However, separating optical signals from high levels of background noise is a persistent challenge. This thesis focuses on the development of dynamic contrast, a novel approach for enhancing image quality by the periodic modulation of optical signals and the subsequent reduction in background via signal demodulation processes.;Chapter 1 introduces the basic concept of dynamic contrast and its application to optical imaging, with illustrations by several recent examples. Some important optical properties of gold nanoparticles (GNPs) are also described, namely plasmon-resonant scattering and photothermal (PT) effect, as a prelude to discussions in Chapter 2 and 4, respectively.;The remaining chapters contain examples of dynamic optical contrast generated from stimuli-responsive probes. Chapter 2 discusses how dynamic contrast can be generated to enhance the optical quality of darkfield images, using gold nanostars (NSTs) with superparamagnetic cores as polarization-sensitive contrast agents. The scattering from NSTs produces a periodic "twinkling" in response to a rotating magnetic field gradient. The modulations produced by gyromagnetic (GM) NSTs are then recovered as signals in the Fourier domain, with a dramatic reduction in background. Similarly, linear magnetic field gradients can produce magnetomotive (MM) signals from NSTs as well as Fe3O4@Au core–shell nanoparticles (NPs), although using different mechanisms of signal generation. Whereas NSTs can produce the polarization-dependent scattering, core–shell NPs create dynamic contrast via lateral displacement. Both GM and MM imaging are applied toward the detection of NSTs or core–shell NPs inside of tumor cells and macrophages, with greatly enhanced signal-to-noise (SNR) ratios compared with conventional darkfield imaging.;In Chapter 3, I investigate how the motion of GM-active NSTs can also be gated by chemical or biological recognition, mediated by small molecules such as neurotransmitters. I demonstrate that NSTs coated with polyMV (a polymer ligand bearing methyl viologen groups) can be "handcuffed" to surfaces coated with polyNp (a polymer ligand bearing 2-naphthol ethers) in the presence of excess cucurbit[8]uril (CB[8]) via supramolecular recognition. The tethering of NSTs on polyNp-coated surfaces can be competitively inhibited by neurotransmitters such as serotonin (5-HT) and dopamine (DA), by preventing formation of the ternary MV2+•Np•CB[8] complex. Reactivation of the GM signal of "handcuffed" NSTs is also observed upon the addition of free 2-naphthol or DA.;In Chapter 4, dynamic contrast is applied to fluorescence thermometric imaging for enhanced temperature resolution. Conventional ratiometric fluorescence thermometry (RaFT) has a temperature resolution of 0.1 to 1.0 K, but a dynamic form of RaFT (DRaFT) can provide greater sensitivity by introducing periodic modulations in laser-induced heating, followed by demodulation of the temperature-dependent fluorescence signals by Fourier transform. The results show that the temperature resolution of DRaFT imaging can be as low as 0.02 K, an order of magnitude better than that produced by RaFT. DRaFT imaging can be used to map thermal gradients with optical resolution, as demonstrated with planar gold substrates, micron-sized islands of gold nanorods, and within live tumor cells.
机译:光学成像已成为癌症诊断和治疗必不可少的工具。然而,将光信号与高水平的背景噪声分离是一项持续的挑战。本文着重研究动态对比度的发展,一种通过周期性调制光信号以及随后通过信号解调过程降低背景来提高图像质量的新方法。第一章介绍了动态对比度的基本概念及其在光学中的应用。成像,并通过几个最近的例子进行说明。还描述了金纳米颗粒(GNP)的一些重要光学特性,即等离振子共振散射和光热(PT)效应,分别作为第2章和第4章讨论的序言;其余各章包含产生动态光学对比度的示例来自刺激反应性探针。第2章讨论了如何使用具有超顺磁性核的金纳米星(NST)作为偏振敏感型造影剂来生成动态对比度以增强暗场图像的光学质量。来自NST的散射响应于旋转的磁场梯度而产生周期性的“闪烁”。然后,将旋磁(GM)NST产生的调制作为傅立叶域中的信号进行恢复,并显着降低背景。同样,线性磁场梯度可以从NST以及Fe3O4 @ Au核壳纳米颗粒(NPs)产生磁动(MM)信号,尽管使用了不同的信号生成机制。 NST可以产生偏振相关的散射,而核壳NP通过横向位移产生动态对比度。 GM和MM成像均用于检测肿瘤细胞和巨噬细胞内部的NST或核壳NP,与传统的暗场成像相比,信噪比(SNR)大大提高。在第3章中,我研究了如何GM活性NST的运动也可以通过小分子(例如神经递质)介导的化学或生物识别来控制。我证明,在过量葫芦[8]尿素(CB [8] ])通过超分子识别。通过阻止三元MV2 +•Np•CB [8]复合物的形成,可通过竞争性抑制血清素(5-HT)和多巴胺(DA)等神经递质抑制NSTs在多聚Np涂层表面的束缚。加入游离的2-萘酚或DA后,还可以观察到“手铐”的NST的GM信号重新激活。在第4章中,将动态对比度应用于荧光测温成像以提高温度分辨率。常规比例荧光测温法(RaFT)的温度分辨率为0.1至1.0 K,但动态形式的RaFT(DRaFT)可以通过在激光感应加热中引入周期性调制,然后解调与温度有关的荧光信号来提供更高的灵敏度。通过傅立叶变换。结果表明,DRaFT成像的温度分辨率可低至0.02 K,比RaFT产生的分辨率高一个数量级。 DRaFT成像可用于绘制具有光学分辨率的热梯度,如平面金基底,微米大小的金纳米棒岛以及活肿瘤细胞内所展示的那样。

著录项

  • 作者

    Wei, Qingshan.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Chemistry Analytical.;Nanoscience.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号