首页> 外文学位 >Ordered Rate Constitutive Theories in Eulerian Description.
【24h】

Ordered Rate Constitutive Theories in Eulerian Description.

机译:欧拉描述中的有序速率本构理论。

获取原文
获取原文并翻译 | 示例

摘要

In this work we consider homogeneous, isotropic, compressible and incompressible matter with finite deformation, that is in thermodynamic equilibrium during evolution. Thus, conservation laws and thermodynamic principles provide the basis for deriving mathematical models and constitutive theories. Conservation of mass, balance of momenta and the first law of thermodynamics yielding continuity equation, momentum equations and energy equation hold regardless of the constitution of the matter, hence naturally they provide no mechanism for deriving constitutive theories for the stress tensor and the heat vector. Thus, the second law of thermodynamics (entropy inequality) must form the basis for deriving the constitutive theories for the stress tensor and heat vector. The choices of dependent variables in the constitutive theories are made using entropy inequality. The arguments (or eventually argument tensors) of the dependent variables in the constitutive theories are chosen based on the desired physics in conjunction with entropy inequality. When the convected time derivatives of the strain tensor (in a chosen basis) are argument tensors of the dependent variables in the constitutive theories, entropy inequality requires decomposition of the Cauchy stress tensor into equilibrium stress tensor and deviatoric Cauchy stress tensor. Constitutive theories for the equilibrium stress tensor using entropy inequality result in thermodynamic pressure for compressible matter and mechanical pressure for incompressible matter. The conditions resulting from the entropy inequality require that the work expanded due to the deviatoric Cauchy stress tensor be positive but provide no mechanism for deriving constitutive theories for the deviatoric Cauchy stress tensor. The conditions resulting from the entropy inequality also require the scalar product of the heat vector and temperature gradient to be negative which can be used for example to derive the Fourier heat conduction law.;The work presented here utilizes theory of generators and invariants to derive the ordered rate constitutive theories for the deviatoric Cauchy stress tensor and heat vector for homogeneous, isotropic, compressible and incompressible thermoelastic solids, thermofluids and thermoviscoelastic fluids in contravariant, covariant and Jaumann bases. General derivations of rate constitutive theories are specialized to show that (i) generalized hypo-elastic solids, hypo-elastic solids with variable material coefficients are a subset of the general ordered rate constitutive theories of order n for thermoelastic solids (ii) constitutive theories for Newtonian fluids, generalized Newtonian fluids with variable material coefficients such as power law, Carreau-Yasuda model for viscosity, power law, Sutherland law etc. for temperature dependent material coefficients are a subset of the general ordered rate constitutive theories of order n for thermofluids (iii) Maxwell model, Oldroyd-B model, Giesekus model etc with variable transport properties are a subset of the general ordered rate constitutive theories for thermoviscoelastic fluids of orders (m, n). The conditions resulting from entropy inequality, leading to restrictions on the material coefficients, are presented to ensure that the constitutive theories derived using the theory of generators and invariants ensure thermodynamic equilibrium during the evolution. All theories presented here consider finite deformation as well as thermal effects.;A significant aspect of the general theories presented here and the simplifications used to obtain commonly used constitutive theories is that we have clear understanding of the many assumptions employed in obtaining them, hence the possibilities and opportunities for developing better constitutive theories for more precise behaviors of the deforming matter experiencing finite deformation. (Abstract shortened by UMI.).
机译:在这项工作中,我们考虑具有有限变形的均质,各向同性,可压缩和不可压缩的物质,即在演化过程中处于热力学平衡状态。因此,守恒定律和热力学原理为推导数学模型和本构理论提供了基础。质量守恒,动量平衡和产生连续性方程,动量方程和能量方程的热力学第一定律不考虑物质的构成而成立,因此,自然地,它们没有提供任何机制来推导应力张量和热矢量的本构理论。因此,热力学第二定律(熵不等式)必须构成推导应力张量和热矢量本构理论的基础。本构理论中因变量的选择是使用熵不等式进行的。本构理论中因变量的自变量(或最终自变量张量)是根据所需的物理原理和熵不等式选择的。当应变张量的对流时间导数(在选定的基础上)是本构理论中因变量的自变量张量时,熵不等式需要将柯西应力张量分解为平衡应力张量和偏柯西应力张量。使用熵不等式的平衡应力张量本构理论导致可压缩物质的热力学压力和不可压缩物质的机械压力。由熵不等式引起的条件要求因偏柯西应力张量而导致的功为正,但不提供派生偏柯西应力张量本构理论的机制。由熵不等式产生的条件还要求热矢量和温度梯度的标量积为负,例如可以用来推导傅立叶热传导定律。;本文介绍的工作利用生成器和不变式理论推导了变系数柯西应力张量和热矢量的有序本构关系理论,用于均质,协变和Jaumann基中的均质,各向同性,可压缩和不可压缩的热弹性固体,热流体和热粘弹性流体。速率本构理论的一般推导专门用于表明(i)广义的次弹性固体,具有可变材料系数的次弹性固体是热弹性固体的n阶一般有序速率本构理论的子集(ii)弹性的本构理论牛顿流体,具有可变材料系数的广义牛顿流体,例如幂定律,粘性的Carreau-Yasuda模型,幂定律,萨瑟兰定律等(与温度相关的材料系数)是热流体的n阶一般有序速率本构理论的子集( iii)具有可变传输特性的Maxwell模型,Oldroyd-B模型,Giesekus模型等是阶数为(m,n)的热粘弹性流体的一般有序速率本构理论的子集。提出了由熵不等式导致的条件,这些条件导致材料系数受到限制,以确保使用生成器和不变式理论导出的本构理论确保演化过程中的热力学平衡。这里介绍的所有理论都考虑了有限变形和热效应。这里介绍的一般理论的一个重要方面以及用于获得常用本构理论的简化形式是,我们对获得它们所采用的许多假设有清楚的了解,因此发展更好的本构理论以对经历有限变形的变形物质的更精确行为的可能性和机会。 (摘要由UMI缩短。)。

著录项

  • 作者

    Nunez, Daniel.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号