首页> 外文学位 >Understanding Correlations Between Structure and Redox Properties in Aqueously-Dispersible, Electrically-Conductive, Polymer-Acid-Doped Polyaniline.
【24h】

Understanding Correlations Between Structure and Redox Properties in Aqueously-Dispersible, Electrically-Conductive, Polymer-Acid-Doped Polyaniline.

机译:了解水分散,导电,聚合物酸掺杂的聚苯胺中结构与氧化还原特性之间的关系。

获取原文
获取原文并翻译 | 示例

摘要

Template synthesis of polyaniline, or PANI, on poly(2-acrylamido-2-methyl-1-propanesulfonic acid), or PAAMPSA, yields aqueously-dispersible PANI-PAAMPSA particles. Through pH-resolved cyclic voltammetry and UV-vis/NIR spectroscopy measurements, PANI-PAAMPSA exhibits stable and reversible transitions to and from PANI's fully oxidized, intermediate, and fully reduced oxidation states of pernigraniline, emeraldine salt, and leucoemeraldine, respectively, in buffer solutions across a pH range of 3-7. Above pH 7, PANI-PAAMPSA exhibits direct transitions between its pernigraniline and leucoemeraldine states. Each of these states possesses unique optical properties, thus imbuing PANI-PAAMPSA with polyelectrochromism without the need to incorporate any comonomers. Transitions between each of PANI's oxidation states approach 95% completion within 10 seconds. Hysteresis, however, is observed in the electrochromic response as the film is subjected to random cycling, a conditioning effect that is attributed to the gradual relaxation of PANI-PAAMPSA particles as the electrostatic interactions between the two polymers is electrochemically moderated. Solvent-annealing PANI-PAAMPSA in dichloroacetic acid (DCA) induces dramatic structural relaxations, resulting in significant enhancements in terms of stability and reversibility in PANI-PAAMPSA's polyelectrochromic response. This DCA treatment equilibrates the structure within PANI-PAAMPSA films, obviating the dynamic relaxation processes that occur during polyelectrochromic switching with untreated films.;The influence of internal film structure on PANI-PAAMPSA's polyelectrochromic ability is further investigated as a function of PANI-PAAMPSA particle size by controlling PAAMPSA's molecular characteristics. The kinetics of PANI-PAAMPSA's electrochromic transitions exhibit an inverse relationship between reaction rate and particle size. By modeling the transmission response, analogies are drawn between polymer crystallization kinetics and the propagation of reaction fronts between PANI's electrically insulating and conducting forms. Specifically, PANI-PAAMPSA's switching kinetics are limited by interparticle contacts, suggesting that the reaction front propagates across particles faster than between particles. Following DCA treatment, PANI-PAAMPSA's electrochromic response is hastened, stabilized, and invariant to the original particle size. As-spun films also demonstrate size-exclusivity with respect to the ionic radius of the buffer cation; these size-exclusion effects are eliminated following DCA-treatment, further confirming the significant influence of internal film structure on electrochromic kinetics.;Lastly, having established the dependence of redox properties on film structure, the redox chemistries of PANI-PAAMPSA can be manipulated to affect its structural, optical, and electrical properties. By chemically reducing PANI-PAAMPSA films, the electrostatic interaction between PANI and PAAMPSA can be eliminated. PAAMPSA subsequently relaxes in the presence of water vapor, after which the surfaces of the films smoothen dramatically. Following relaxation, the films are chemically oxidized back to their conductive state, during which the optical and electrical properties of the films undergo changes that are directly analogous to those associated with PANI films treated with performance-enhancing DCA. The interrelationships between the structural, optical, electrical, and redox properties of polymer-acid-doped conductive polymers revealed in this work provide novel insight into the behavior of these systems, and will help guide the development of future organic electronic materials.
机译:在聚(2-丙烯酰胺基-2-甲基-1-甲基-1,丙烷磺酸)或PAAMPSA上进行聚苯胺或PANI的模板合成,可得到水分散性PANI-PAAMPSA颗粒。通过pH解析循环伏安法和UV-vis / NIR光谱学测量,PANI-PAAMPSA在缓冲液中分别表现出往返于PANI的肾上腺素,祖母绿盐和白细胞祖母绿的完全氧化,中和完全还原的氧化态的稳定和可逆转变。溶液的pH值范围为3-7。在pH值高于7时,PANI-PAAMPSA在其肾上腺素和白三烯翡翠状态之间表现出直接转变。这些状态中的每一个都具有独特的光学特性,因此,在PANI-PAAMPSA中加入了多电致变色现象,而无需引入任何共聚单体。每个PANI氧化态之间的过渡在10秒内达到95%的完成率。然而,当薄膜经历随机循环时,在电致变色响应中观察到滞后现象,这是由于两种聚合物之间的静电相互作用被电化学缓和而导致的PANI-PAAMPSA颗粒逐渐松弛的调节作用。在二氯乙酸(DCA)中进行溶剂退火的PANI-PAAMPSA引起显着的结构松弛,从而导致PANI-PAAMPSA的多电致变色反应的稳定性和可逆性得到了显着提高。这种DCA处理可平衡PANI-PAAMPSA膜内的结构,从而避免了在用未经处理的膜进行多电致变色转换过程中发生的动态弛豫过程。;进一步研究了内部膜结构对PANI-PAAMPSA的多电致变色能力的影响,作为PANI-PAAMPSA颗粒的函数通过控制PAAMPSA的分子特性来确定分子大小。 PANI-PAAMPSA的电致变色动力学在反应速率和粒径之间表现出反比关系。通过对传输响应进行建模,可以得出聚合物结晶动力学与PANI的电绝缘和导电形式之间反应前沿传播之间的相似之处。具体而言,PANI-PAAMPSA的转换动力学受到粒子间接触的限制,这表明反应前沿在粒子之间的传播比粒子之间的传播快。经过DCA处理后,PANI-PAAMPSA的电致变色反应得以加快,稳定化,并且不会改变原始粒径。初纺薄膜还显示出相对于缓冲阳离子离子半径的尺寸排他性。在DCA处理后消除了这些尺寸排阻效应,进一步证实了内部膜结构对电致变色动力学的显着影响。最后,在建立了氧化还原特性对膜结构的依赖性之后,可以操纵PANI-PAAMPSA的氧化还原化学影响其结构,光学和电气性能。通过化学还原PANI-PAAMPSA膜,可以消除PANI和PAAMPSA之间的静电相互作用。随后,PAAMPSA在水蒸气的存在下松弛,此后薄膜表面急剧平滑。松弛后,薄膜被化学氧化回其导电状态,在此期间,薄膜的光学和电学性质发生变化,这些变化直接类似于用性能增强型DCA处理过的PANI薄膜相关的变化。这项工作中揭示的聚合物-酸掺杂导电聚合物的结构,光学,电学和氧化还原特性之间的相互关系为这些系统的行为提供了新颖的见识,并将有助于指导未来有机电子材料的发展。

著录项

  • 作者

    Tarver, Jacob Daniel.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry Polymer.;Engineering Materials Science.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号