首页> 外文学位 >New Electrochemical Methods for Studying Nanoparticle Electrocatalysis and Neuronal Exocytosis.
【24h】

New Electrochemical Methods for Studying Nanoparticle Electrocatalysis and Neuronal Exocytosis.

机译:研究纳米粒子电催化和神经元胞吐作用的新的电化学方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the construction and application of micro and nanoscale electrodes for electroanalytical analysis. The studies presented herein encompass two main areas: electrochemical catalysis, and studies of the dynamics of single cell exocytosis.;The first portion of this dissertation engages the use of Pt nanoelectrodes to study the stability and electrocatalytic properties of materials. A single nanoparticle electrode (SNPE) was fabricated by immobilizing a single Au nanoparticle on a Pt disk nanoelectrode via an amine-terminated silane cross linker. In this manner we were able to effectively study the electrochemistry and electrocatalytic activity of single Au nanoparticles and found that the electrocatalytic activity is dependent on nanoparticle size. This study can further the understanding of the structure-function relationship in nanoparticle based electrocatalysis. Further work was conducted to probe the stability of Pt nanoelectrodes under conditions of potential cycling. Pt based catalysts are known to deteriorate under such conditions due to losses in electrochemical surface area and Pt dissolution. By using Pt disk nanoelectrodes we were able to study Pt dissolution via steady-state voltammetry. We observed an enhanced dissolution rate and higher charge density on nanoelectrodes than that previously found on macro scale electrodes.;The goal of the second portion of this dissertation is to develop new analytical methods to study the dynamics of exocytosis from single cells. The secretion of neurotransmitters plays a key role in neuronal communication, and our studies highlight how bipolar electrochemistry can be employed to enhance detection of neurotransmitters from single cells. First, we developed a theory to quantitatively characterize the voltammetric behavior of bipolar carbon fiber microelectrodes and secondly applied those principles to single cell detection. We showed that by simply adding an additional redox mediator to the back-fill solution of a carbon fiber microelectrode, there is a significant enhancement in detection. Additionally we used solid state nanopores to detect individual phospholipid vesicles in solution. Vesicles are key cellular components that play essential biological roles especially in neurotransmission. This work represents preliminary studies in detection and size determination from vesicles isolated from individual cells.
机译:本文介绍了用于电分析的微米级和纳米级电极的构建和应用。本文介绍的研究包括两个主要领域:电化学催化和单细胞胞吐动力学的研究。本论文的第一部分涉及使用Pt纳米电极研究材料的稳定性和电催化性能。通过经由胺端基的硅烷交联剂将单个Au纳米颗粒固定在Pt盘纳米电极上来制造单个纳米颗粒电极(SNPE)。通过这种方式,我们能够有效地研究单个Au纳米颗粒的电化学和电催化活性,并发现电催化活性取决于纳米颗粒的大小。这项研究可以进一步了解基于纳米粒子的电催化中的结构-功能关系。进行了进一步的工作以探究Pt纳米电极在电势循环条件下的稳定性。已知Pt基催化剂在这种条件下由于电化学表面积的损失和Pt溶解而劣化。通过使用铂圆盘纳米电极,我们能够通过稳态伏安法研究铂的溶解。我们观察到纳米电极上的溶出速率提高,并且电荷密度更高,这比以前在大型电极上发现的更高。本论文第二部分的目的是开发新的分析方法,以研究单细胞的胞吐动力学。神经递质的分泌在神经元交流中起关键作用,我们的研究突出了如何利用双极电化学增强单细胞中神经递质的检测。首先,我们开发了一种理论来定量表征双极碳纤维微电极的伏安行为,其次将这些原理应用于单细胞检测。我们表明,只需在碳纤维微电极的回填溶液中添加其他氧化还原介体,即可显着提高检测效率。另外,我们使用固态纳米孔来检测溶液中的单个磷脂囊泡。囊泡是关键的细胞成分,尤其在神经传递中起着重要的生物学作用。这项工作代表了从单个细胞分离的囊泡的检测和大小确定方面的初步研究。

著录项

  • 作者

    Cox, Jonathan T.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry General.;Nanoscience.;Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号