首页> 外文学位 >Motion planning and robust control for nonholonomic mobile robots under uncertainties.
【24h】

Motion planning and robust control for nonholonomic mobile robots under uncertainties.

机译:不确定性下非完整移动机器人的运动计划和鲁棒控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses the problem of motion planning and control for nonholonomic mobile robots, particularly wheeled and tracked mobile robots, working in extreme environments, for example, desert, forest, and mine. In such environments, the mobile robots are highly subject to external disturbances (e.g., slippery terrain, dusty air, etc.), which essentially introduce uncertainties to the robot systems. The complexity of the motion planning problem is due to taking both nonholonomic and uncertainty constraints into account simultaneously. As a result, none of the conventional nonholonomic motion planning can be directly applied. The control problem is even more challenging since state constraints posed by obstacles in the environments must also be considered along with the nonholonomic and uncertainty constraints.;In this research, we systematically develop a new type of motion planning technique that determines an optimal path for a mobile robot in a given environment. This motion planning technique is based on the idea of a maximum allowable uncertainty, which is a number assigned to each free configuration in the environment. The optimal path is a path connecting given initial and goal configurations through a series of configurations respecting the nonholonomic constraint and possessing the highest maximum allowable uncertainty. Both linear and quadratic approximations of the maximum allowable uncertainty, including their corresponding motion planners, have been studied. Additionally, we develop the first real-time robust control algorithm for the mobile robot under uncertainty to follow given paths safely and accurately in cluttered environments. The control algorithm also utilizes the concept of the maximum allowable uncertainty as well as the robust control theory. The simulation results have shown the effectiveness and robustness of the control algorithm in steering the mobile robot along a given path amidst obstacles without collisions even when the level of robot uncertainty is high.
机译:本文针对非完整移动机器人,特别是轮式和履带移动机器人,在极端环境(例如沙漠,森林和矿山)中的运动规划和控制问题进行了研究。在这样的环境中,移动机器人极易受到外部干扰(例如,湿滑的地形,多尘的空气等),这实质上给机器人系统带来了不确定性。运动计划问题的复杂性是由于同时考虑了非完整性和不确定性约束。结果,传统的非完整运动计划都不能直接应用。由于必须同时考虑环境中的障碍物所造成的状态约束以及非完整性和不确定性约束,因此控制问题更具挑战性。在本研究中,我们系统地开发了一种新型的运动规划技术,该技术可以确定运动的最佳路径。给定环境中的移动机器人。此运动计划技术基于最大允许不确定度的概念,该不确定度是分配给环境中每个自由配置的数字。最佳路径是通过一系列考虑非完整约束并具有最高最大允许不确定性的配置,将给定的初始配置和目标配置连接起来的路径。已研究了最大允许不确定度的线性和二次近似,包括其相应的运动计划器。此外,我们为不确定性下的移动机器人开发了第一个实时鲁棒控制算法,以在混乱的环境中安全,准确地遵循给定的路径。该控制算法还利用最大允许不确定度的概念以及鲁棒控制理论。仿真结果表明,即使在机器人不确定性较高的情况下,控制算法在无障碍物的情况下沿着给定路径操纵移动机器人的有效性和鲁棒性也不会发生碰撞。

著录项

  • 作者

    Kanarat, Amnart.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:43:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号