首页> 外文学位 >Large-eddy simulation (two-dimensional) of spatially developing mixing layer using vortex-in-cell for flow field and filtered density function for scalar field.
【24h】

Large-eddy simulation (two-dimensional) of spatially developing mixing layer using vortex-in-cell for flow field and filtered density function for scalar field.

机译:大涡模拟(二维),用于空间展开的混合层,使用单元内涡流作为流场,并使用滤波后的密度函数处理标量场。

获取原文
获取原文并翻译 | 示例

摘要

A Large Eddy Simulation (LES) based on filtered vorticity transport equation formulated using diffusion-velocity method and discrete vortex method has been coupled to filtered density function (FDF) equation for scalar, to predict the velocity and passive scalar field of a spatially developing mixing layer. In the vortex method, the vorticity-based and eddy-viscosity type subgrid scale (SGS) model simulating the enstrophy transfer between the large and small scale appears as a convective term in the diffusion-velocity formulation. The methodology has been tested on a spatially growing mixing layer using the two-dimensional vortex-in-cell method with both Smagorinsky and Dynamic Eddy Viscosity subgrid scale models for an anisotropic flow. The effects on the vorticity contours, momentum thickness, streamwise mean velocity profiles, root-mean-square velocity and vorticity fluctuations and negative cross-stream correlation are discussed. Comparison is made with experimental and numerical works where diffusion is simulated using random walk.; The transport equation for FDF is solved using the Lagrangian Monte Carlo method scheme. The unsolved subgrid scale convective term in FDF equation is modeled using the conventional gradient diffusion model for an anisotropic flow. The subgrid scalar mixing term is modelled using the Modified Curl model. The characteristics of the passive scalar, i.e., mean concentration, root-mean-square concentration fluctuation profiles and probability density function (PDF) are presented and compared with previous numerical and experimental works. The sensitivity of results to SGS model, Schmidt number, constant in mixing frequency and inlet boundary condition is discussed.
机译:基于使用扩散速度方法和离散涡旋方法制定的滤波涡旋输运方程的大型涡模拟(LES)已与标量的滤波密度函数(FDF)方程耦合,以预测空间发展混合的速度和被动标量场层。在涡旋法中,模拟大尺度和小尺度之间的涡旋转移的基于涡度的涡流型亚网格尺度(SGS)模型是扩散速度公式中的对流项。该方法已使用二维单元格涡流方法在空间增长的混合层上进行了测试,该方法具有Smagorinsky模型和动态涡流粘度子网格规模模型,用于各向异性流动。讨论了对涡度等高线,动量厚度,水流平均速度分布,均方根速度和涡度波动以及负横流相关性的影响。与通过随机游走模拟扩散的实验和数值工作进行了比较。使用拉格朗日蒙特卡罗方法方案求解FDF的输运方程。 FDF方程中未解决的亚网格尺度对流项是使用各向异性流的常规梯度扩散模型建模的。使用Modified Curl模型对亚网格标量混合项建模。给出了无源标量的特征,即平均浓度,均方根浓度波动分布和概率密度函数(PDF),并将其与先前的数值和实验工作进行了比较。讨论了结果对SGS模型的敏感性,施密特数,混合频率常数和入口边界条件。

著录项

  • 作者

    Wang, Jinkai.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2004
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号